

GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING

COMPETENCY BASED CURRICULUM

SEMICONDUCTOR TECHNICIAN

(Duration: One Year)

CRAFTSMEN TRAINING SCHEME (CTS)

SECTOR – ELECTRONICS & HARDWARE

SEMICONDUCTOR TECHNICIAN

(Engineering Trade)

(Designed in 2024)

Version: 1.0

CRAFTSMEN TRAINING SCHEME (CTS)

NSQF LEVEL – 4.5

Developed By

Ministry of Skill Development and Entrepreneurship

Directorate General of Training **CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE** EN-81, Sector-V, Salt Lake City, Kolkata – 700 091 www.cstaricalcutta.gov.in

=

S No.	Topics	Page No.
1.	Course Information	1
2.	Training System	2
3.	Job Role	6
4.	General Information	7
5.	Learning Outcome	9
6.	Assessment Criteria	10
7.	Trade Syllabus	15
8.	Annexure I (List of Trade Tools & Equipment)	41
9.	Annexure II (List of Trade experts)	45

1. COURSE INFORMATION

During the one-year duration of Semiconductor Technician trade a candidate is trained on professional skill, professional knowledge & Employability skill related to job role. In addition to this a candidate is entrusted to undertake project work and extra- curricular activities to build up confidence. The broad components covered under Professional Skill subject are as below:

This comprehensive course provides students with a thorough understanding of semiconductor technology and its application. It covers a wide range of topics, including the exploration of passive and active electronic components, semiconductor materials, cleanroom processes, assembly and packaging techniques, wafer probe testing, device physics, and semiconductor device applications. Emphasis is placed on safety precautions and environmental considerations, as well as practical exposure to engineering drawings and workshop calculation and science for real-world application. By the end of this course, students will possess the knowledge and skills needed to work with semiconductor components and devices while adhering to industry safety standards, making them well-prepared for careers in the semiconductor technology field.

2.1 GENERAL

The Directorate General of Training (DGT) under Ministry of Skill Development & Entrepreneurship offers a range of vocational training courses catering to the need of different sectors of the economy/ labour market. The vocational training programs are delivered under the aegis of Directorate General of Training (DGT). Craftsman Training Scheme (CTS) with variants and Apprenticeship Training Scheme (ATS) are two pioneer programs of DGT for strengthening vocational training.

'Semiconductor Technician' trade under CTS is one of the newly designed courses. CTS courses are delivered nationwide through a network of ITIs. The course is of one-year duration. It mainly consists of Domain area and Core area. In the Domain area (Trade Theory and Practical) impart professional skills and knowledge, while the core area (Employability Skill) imparts requisite core skills, knowledge, and life skills. After passing out the training program, the trainee is awarded National Trade Certificate (NTC) by DGT which is recognized worldwide.

Candidates broadly need to demonstrate that they are able to:

- Read and interpret technical parameters / documentation, plan and organize work processes, identify necessary materials and tools;
- Perform task with due consideration to safety rules, accident prevention regulations and environmental protection stipulations.
- Apply professional knowledge & employability skills while performing the job and modification & maintenance work.
- Check the system specification and application software as per requirement of the design of job.
- Document the technical parameter related to the task undertaken.

2.2 PROGRESSION PATHWAYS

- Can join industry as Semiconductor Technician and will progress further as Senior Technician and can rise up to the level of Project Manager.
- Can become Entrepreneur in the related field.
- Can join Apprenticeship programs in different types of industries leading to a National Apprenticeship certificate (NAC).
- Can join Crafts Instructor Training Scheme (CITS) in the trade for becoming an instructor in ITIs.
- Can join Advanced Diploma (Vocational) courses under DGT as applicable.

2.3 COURSE STRUCTURE

Table below depicts the distribution of training hours across various course elements during a period of one-year: -

S No.	Course Element	Notional Training Hours
1	Professional Skill (Trade Practical)	840
2	Professional Knowledge (Trade Theory)	240
3	Employability Skills	120
	Total	1200

Every year 150 hours of mandatory OJT (On the Job Training) at nearby industry, wherever not available then group project is mandatory

On the Job Training (OJT)/ Group Project	150
Optional Courses (10th/ 12th class certificate along with ITI	240
certification or add on short term courses)	

Trainees of one-year or two-year trade can also opt for optional courses of up to 240 hours in each year for 10th/ 12th class certificate along with ITI certification or add on short term courses.

2.4 ASSESSMENT & CERTIFICATION

The trainee will be tested for his skill, knowledge and attitude during the period of course through formative assessment and at the end of the training programme through summative assessment as notified by the DGT from time to time.

a) The Continuous Assessment (Internal) during the period of training will be done by **Formative Assessment Method** by testing for assessment criteria listed against learning outcomes. The training institute has to maintain an individual trainee portfolio as detailed in assessment guideline. The marks of internal assessment will be as per the formative assessment template provided on<u>www.bharatskills.gov.in</u>

b) The final assessment will be in the form of summative assessment. The All India Trade Test for awarding NTC will be conducted by Controller of examinations, DGT as per the guidelines. The pattern and marking structure is being notified by DGT from time to time. **The learning outcome and assessment criteria will be the basis for setting question papers for final assessment. The examiner during final examination will also check** the individual trainee's profile as detailed in assessment guideline before giving marks for practical examination.

2.4.1 PASSREGULATION

For the purposes of determining the overall result, weightage of 100% is applied for six months and one year duration courses and 50% weightage is applied to each examination for two years courses. The minimum pass percent for Trade Practical and Formative assessment is 60% & for all other subjects is 33%.

2.4.2 ASSESSMENTGUIDELINE

Appropriate arrangements should be made to ensure that there will be no artificial barriers to assessment. The nature of special needs should be taken into account while undertaking the assessment. Due consideration should be given while assessing for teamwork, avoidance / reduction of scrap / wastage and disposal of scrap / waste as per procedure, behavioral attitude, sensitivity to the environment and regularity in training. The sensitivity towards OSHE and self-learning attitude are to be considered while assessing competency.

Assessment will be evidence based comprising the following:

- Job carried out in labs/workshop
- Record book/ daily diary
- Answer sheet of assessment
- Viva-voce
- Progress chart
- Attendance and punctuality
- Assignment
- Project work
- Computer based multiple choice question examination
- Practical Examination

Evidences and records of internal (Formative) assessments are to be preserved until forthcoming examination for audit and verification by examining body. The following marking pattern to be adopted for formative assessment:

Performance Level	Evidence
(a) Marks in the range of 60%-75% to be allotted during assessment	

For performance in this grade, the candidate should produce work which demonstrates attainment of an acceptable standard of craftsmanship with occasional guidance, and due regard for safety procedures and practices	 Demonstration of good skills and accuracy in the field of work/ assignments. A fairly good level of neatness and consistency to accomplish job activities. Occasional support in completing the task/ job.
(b) Marks in the range of 75%-90% to be allott	
For this grade, a candidate should produce work which demonstrates attainment of a reasonable standard of craftsmanship, with little guidance, and regard for safety procedures and practices (c) Marks in the range of more than 90% to be	 Good skill levels and accuracy in the field of work/ assignments. A good level of neatness and consistency to accomplish job activities. Little support in completing the task/job. allotted during assessment
For performance in this grade, the candidate, with minimal or no support in organization and execution and with due regard for safety procedures and practices, has produced work which demonstrates attainment of a high standard of craftsmanship.	 High skill levels and accuracy in the field of work/assignments. A high level of neatness and consistency to accomplish job activities. Minimal or no support in completing the task/ job.

Semiconductor Technician is responsible for performing a range of tasks in the semiconductor manufacturing industry, including the assembly, testing, and maintenance of semiconductor components and devices. Their role involves operating specialized equipment, conducting quality control checks, troubleshooting issues, and following safety protocols in cleanroom environments. They also work with engineers to assist in the production, characterization, and development of semiconductor materials and devices, playing a crucial role in ensuring the efficient and accurate production of semiconductor products.

Reference NCO-2015: -

(a) 3114.9900 - Electronics and Telecommunications Engineering Technicians, Other

Reference NOS:

a)	ELE/N9499
b)	ELE/N9500
c)	ELE/N9501
d)	ELE/N9502
e)	ELE/N9503
f)	ELE/N9504
g)	ELE/N9505

h)	ELE/N9506
i)	ELE/N9507
j)	ELE/N9508
k)	ELE/N9509
I)	PSS/N9401
m)	PSS/N9402
n)	MEP/N9477

4. GENERAL INFORMATION

	NOTE: Out of two Instructors required for the unit of 2 (1+1), one must have Degree/Diploma and other must have NTC/NAC qualifications. However, both of them must possess NCIC in any of its variants.
2. Employability Skill	MBA/ BBA / Any Graduate/ Diploma in any discipline with Two years'
	experience with short term ToT Course in Employability.
	(Must have studied English/ Communication Skills and Basic Computer at 12th / Diploma level and above)
	OR
	Existing Social Studies Instructors in ITIs with short term ToT Course in
	Employability.
3. Minimum Age for Instructor	21 Years
List of Tools and Equipment	As per Annexure – I

Learning outcomes are a reflection of total competencies of a trainee and assessment will be carried out as per the assessment criteria.

5.1 LEARNING OUTCOMES

- Describe the fundamental properties, characteristics and applications of semiconductor materials, including crystal structures, energy bands and carrier behavior. (NOS: ELE/N9499)
- Familiarize with passive and active electronic components built with semiconductor technology and Exposure to various semiconductor component, devices, sensors, small circuits. (NOS: ELE/N9500)
- 3. Identify semiconductor Materials and Processes management. (Simulation) (NOS: ELE/N9501
- 4. Demonstrate assembly and packaging of semiconductor technology and Attain exposure to do assembly and packaging tools and operations. (NOS: ELE/N9502)
- Perform wafer probe testing and physical characterization and attain practical exposure on wafer level and package level electrical and physical characterization; ESD safe tools used in work environment. (NOS: ELE/N9503)
- 6. Demonstrate Semiconductor Device Applications. (NOS: ELE/N9504)
- 7. Follow Safety precaution and Environmental Considerations. Safety Hazards, Hazardous gas and chemical Handling, Environment Safety containment procedure for accident handling including first aid. (NOS: ELE/N9505)
- 8. Interpret on chemical, gases, instrumentation, Automation, Vacuum Technology, HVAC etc. (NOS: ELE/N9506)
- 9. Handle and operate robotics system procedure. (NOS: ELE/N9507)
- 10. Exposure to Equipment e.g. RF Generator, Temperature Controller, Pressure Gauges, Pumps, Conditioners, etc. (NOS: ELE/N9508)
- 11. Operate and Handle of High Voltage System. (NOS: ELE/N9509)
- 12. Read and apply engineering drawing for different application in the field of work. (NOS: PSS/N9401)
- 13. Demonstrate basic mathematical concept and principles to perform practical operations. Understand and explain basic science in the field of study. (NOS: PSS/N9402)

6. ASSESSMENT CRITERIA

	LEARNING OUTCOMES	ASSESSMENT CRITERIA
1.	Describe the	Demonstrate the fundamental properties of semiconductor
	fundamental properties,	materials.
	characteristics and	Explain energy band theory including the concepts of valence and
	applications of	conduction bands, the band gap and role of energy bands in
	semiconductor materials,	semiconductor behavior.
	including crystal	Describe the crystal structure of common semiconductor materials.
	structures, energy bands	Explain carrier behavior in semiconductors including the concepts
	and carrier behavior.	of electrons and holes, carrier mobility and carrier concentration.
	(NOS: ELE/N9499)	Explain practical application of semiconductor materials in various
		fields.
2.	Familiarize with passive	Identification of different passive, active components and ICs.
	and active electronic	Measure the resistor, capacitor and inductor values.
	components built with	Construction and test RC time constant circuits.
	semiconductor	Construct and test series and parallel resonance circuits (Use of R, L
	technology and Exposure	and C); RC differentiator.
	to various semiconductor	Plot the I-V characteristics of a PN junction diode under forward and
	component, devices,	reverse bias conditions.
	sensors, small circuits.	Use diodes and transistors to build and test simple circuits. This could
	(NOS: ELE/N9500)	include rectifier circuits, amplifier circuits, or oscillator circuits.
		Curve tracer for electrical measurements of resistors, diodes,
		transistors, etc.
		Measure and compare the Silicon, Germanium diode I-V (both
		forward and reverse) characteristics.
		Measure and compare the I-V (both forward and reverse)
		characteristics of diodes with different break down voltages.
		Explain use of LED and photodiodes.
		Construct and test Zener based voltage regulator circuit.
		Measure NPN and PNP I-V characteristics.
		Measure N-type and P-type MOS transistor characteristics.
		Construct and test a common emitter amplifier.
		Construct and test BJT and MOS transistor-based switching circuits.
		Construct and test a FET amplifier.
		Measure the performance and characteristics of various

		semiconductor devices.
3.	Identify semiconductor	Identify and select various semiconductor materials, such as silicon,
	Materials and Processes	germanium, and gallium arsenide.
	management.	Prepare semiconductor materials for device fabrication including
	(Simulation)	processes like cleaning, etching, or surface passivation.
	(NOS: ELE/N9501)	Demonstrate the doping of semiconductors to create n-type and p-
		type materials.
		Carryout oxidation processes used in semiconductor fabrication, such
		as thermal oxidation.
		Carryout the photolithography, a key process in semiconductor fabrication.
		Demonstrate the deposition processes like chemical vapor deposition
		(CVD) or physical vapor deposition (PVD).
		Heat the wafer to activate dopants and repair crystal damage caused
		by ion implantation.
		Create MOS transistors involves defining gate source and drain
		regions.
		Build metal layers to connect various components on the chip.
		Insulate layers separate metal layers to prevent electrical interference.
		Mount the ICs in protective packages with pins for external connections.
		Check individual dies on a wafer for defects and electrical
		functionality.
		Ensure that packaged ICs meet their specifications before shipment.
		Reduce the environmental impact of semiconductor fabrication
		through cleaner processes and recycling.
4.	Demonstrate assembly	Semi-conductor packages made of plastic/ceramic; package types:
	and packaging of	DIP, PGA, BGA, CQFP, etc
	semiconductor	Wafer dicing, die attach, die wire bonding, sealing;
	technology and Attain	Microscopic Inspection of assembly & packaging.
	exposure to do assembly	Various packaging techniques used to protect the semiconductor
	and packaging tools and	device and provide external electrical connections.
	operations.	
	(NOS: ELE/N9502)	
5.	Perform wafer probe	Using testing equipment to measure the properties of the fabricated

	testing and physical	semiconductor devices.		
	characterization and	Microscope Inspection, Wafer Nos and Ids noting		
	attain practical exposure	Probe card, probe card handling, loading, alignment, wafer probing,		
	on wafer level and	measurement of resistance, diode, transistor IV-characteristics, etc.		
	package level electrical	ESD safe protocols: precautions while handling packaged devices:		
	and physical	ESD strap, ESD mats, ionisers, etc.		
	characterization; ESD	Charge Induction in Electrostatics		
	safe tools used in work	Charge Conduction in Electrostatics		
	environment.	Pith ball pendulum Electroscope		
	(NOS: ELE/N9503)	Relative charges of different rods with the help of Digital Display in		
		millivolts		
		Electrostatic Charge with the help of Charge Demonstration Tube		
		Electrostatic Charge by the combination of different rods & cloths		
6.	Demonstrate	Use software tools to design and simulate digital and analog circuits		
	Semiconductor Device	using semiconductor devices.		
	Applications.	Design and implement logic gates, flip-flops and memory cells using		
	(NOS: ELE/N9504)	CMOS technology.		
		Build analog component such as operational amplifies, voltage		
		regulators and analog filters.		
		Design and analyze power semiconductor devices like MOSFETs,		
		IGBTs and thyristors, UJT, FET, etc.		
		Fabricate simple circuits on a breadboard or printed circuit board		
		(PCB), and test their performance.		
		Measure the output of a solar cell under different light conditions, or		
		testing the performance of an LED or laser diode.		
		Observe the activities with semiconductor sensors, such as		
		measuring temperature with a semiconductor temperature sensor,		
		or light intensity with a photodiode.		
		Measure the gain of an RF amplifier, or the frequency response of an		
		RF filter.		
		Integrate semiconductor sensors into Internet of Things (IoT) devices		
		for data collection and control.		
		Apply in smart homes, wearable devices and Industrial IoT.		
		Examine semiconductor application in vehicle control systems, safety		
		features and infotainment.		
		Use in engine control units (ECUs), anti lock braking systems (ABS)		
		and advanced driver assistance systems (ADAS).		
		Implement semiconductor devices in medical imaging, monitor		

		equipment and diagnostic tools.
		Identify the application of semiconductor technology in medical
		electronics viz. X-ray machines, MRI scanners and wearable health
		devices.
7.	Follow Safety precaution	Proper handle, storage and dispose of hazardous chemical used in
	and Environmental	semiconductor manufacturing including acids, solvents and gases
	Considerations. Safety	Implement safety data sheets (SDS) and chemical hygiene plans
	Hazards, Hazardous gas	Use Personal protective equipment (PPE).
	and chemical Handling,	Handle safely of toxic and flammable gases, including installation and
	Environment Safety	maintenance of gas delivery systems
	containment procedure	Care of electrical hazard awareness and precautions for working with
	for accident handling	high voltage equipment.
	including first aid.	Adherence to cleanroom procedures, including gowning,
	(NOS: ELE/N9505)	contamination control and strict adherence to cleanliness standards.
		Monitor and maintain controlled environments for manufacturing.
		Maintain environmental regulations.
		Measurement of the EMI radiations from electronic circuitry or
		machines for safe environmental conditions based on regulatory
		norms.
		Implement energy-efficient practices and equipment to reduce the
		carbon footprint of semiconductor manufacturing facilities.
8.	Interpret on chemical,	Use of Temperature and Humidity sensor, and different type of gas
	gases, instrumentation,	sensor.
	Automation, Vacuum	Signal conditioning blocks likes Types of Amplifiers, Filters and
	Technology, HVAC etc.	Converters.
	(NOS: ELE/N9506)	Use of PLC Ladder Programming.
		Working of Pressure Transmitter, Temperature Transmitter, Flow
		Transmitter Level Transmitter
9.	Handle and operate	Program the path of 6 axis robot through PC.
	robotics system	Control the motors through PC.
	procedure.	Control the Arm and X-Y directions of the motors, using any external
	(NOS: ELE/N9507)	controller.
		1
10	. Exposure to Equipment	How to use PID Controller as on/off Controller P, PI and PID
	e.g. RF Generator,	Controller.
	<u> </u>	14

conductor Technician	
Temperature Controller,	How to Use PID Temperature Controller as On/off Controller.
Pressure Gauges, Pumps,	Working of Air Conditioners
Conditioners, etc.	Working of pressure gauge Bourdon Tube Pressure Gauge,
(NOS: ELE/N9508)	Diaphragm Pressure Gauge, Capsule Pressure Gauge, Differential
	Pressure Gauge working and its application
	Heater Temperature Control using PID Controller.
11. Operate and Handle of	Measurement of (Dielectric Strength) of transformer oil Breakdown
High Voltage System.	Voltage
(NOS: ELE/N9509)	Operating principle of over voltage relay, Under voltage relay, Neutral
	failure protection, over current relay, Earth fault relay,
	Contactor, Star- delta starter & timer.
	Demonstration and operational working of dielectric Strength of
	Transformer Oil at 80KVolt
	Testing & measurement of electrical insulation to keep power
	system running smoothly.
	Handling clamp meter to measure the current flowing through a
	conductor without touching it.
	Illustrate operation and working of Earth Leakage Detector that
	simply clamp around a conductor and gives a reading of the actual
	leakage current
12. Read and apply	Read & interpret the information on drawings and apply in executing
engineering drawing for	practical work.
different application in	Read & analyze the specification to ascertain the material
the field of work.	requirement, tools and assembly/maintenance parameters.
	Encounter drawings with missing/unspecified key information and
	make own calculations to fill in missing dimension/parameters to
	carry out the work.
	·
13. Demonstrate basic	Solve different mathematical problems.
mathematical concept	
and principles to perform	
practical operations.	Explain concept of basic science related to the field of study.
Understand and explain	
basic science in the field	
of study.	

7. TRADE SYLLABUS

	SYLLAB	JS FOR SEMICONDUCTOR TECHN	ICIAN TRADE
		DURATION: ONE YEAR	
Duration	Reference Learning Outcome	Professional Skills (Trade Practical)	Professional Knowledge (Trade Theory)
Professional skills 20 Hrs. Professional Knowledge 10 Hrs.	Describe the fundamental properties, characteristics and applications of semiconductor materials, including crystal structures, energy bands and carrier behavior.	 Testing and characterization of diodes in different configurations (rectifiers, voltage regulators, etc.). Measuring diode characteristics, including forward and reverse biasing. Practical testing of semiconductor material properties such as Band Gap of Diode and of wafer by using Four Probe method. Measure the Hall voltage and learn Hall Effect, resistivity, mobility, and thermal conductivity. Measure the junction temperature of two different materials and Potential difference by using Seeback & Peltier effect apparatus Planck's constant measurement for understanding the photoconductivity Identification of different 	 Introduction to semiconductors, distinguishing them from conductors and insulators. Introduction to crystal structures and their role in semiconductor materials. Atom and Electrons Energy band theory and the concept of valence and conduction bands. Intrinsic and Extrinsic Semiconductors Understanding the difference between pure (intrinsic) and doped (extrinsic) semiconductors. Concepts of electron and hole carriers in semiconductors. Calculating carrier concentration and mobility. Understanding the Fermi level and its importance in carrier behavior. How doping affects the Fermi level. Conductivity in semiconductors and its temperature dependence.

niconductor Technician		
	 passive, active components and ICs. 8. Measure the resistor, capacitor and inductor, transistor, diode values. 9. Assembling basic semiconductor devices and circuits. 10. Verifying device functionality and performance. 	 Carrier Generation and Recombination: Processes of carrier generation and recombination. How they impact the electrical behavior of semiconductors. Detailed study of common semiconductor materials like silicon and gallium arsenide. Thermal, mechanical, and electrical properties of these materials. How semiconductor materials are used in various devices, including diodes, transistors, and photovoltaic cells. Understanding defects and impurities in semiconductor materials. Their impact on material properties and device performance. Understanding the Energy band gap and measurement in semiconductor Diodes& Wafer – Germanium Understanding the principle of Hall Effect in Semiconductor material Study the Photoconductivity in semiconductor materials and Planck's constant

	1	11 Construction and test DC	
Professional	Familiarize with	11. Construction and test RC	Conductors, Insulators and
skills 90 Hrs.	passive and active	time constant circuits.	Semiconductors
	electronic	12. Construct and test series	• Current, Voltage and Power
Professional	components built	and parallel resonance	Resistors, Resistors in series
Knowledge	with semiconductor	circuits (Use of R, L and	and parallel
30 Hrs.	technology and	C); RC differentiator.	 Ohms Law and Kirchhoff's
	Exposure to various	13. Plot the I-V	Laws
	semiconductor	characteristics of a PN	 Resistor colour coding,
	component, devices,	junction diode under	Specification of various
	sensors, small	forward and reverse bias	types of resistors and their
	circuits.	conditions.	applications
		14. Use diodes and	Capacitors and capacitance
		transistors to build and	Series and Parallel
		test simple circuits. This	connection of capacitors
		could include rectifier	 Inductors and inductance,
		circuits, amplifier circuits,	Types of inductors and their
		or oscillator circuits.	construction
		15. Understand the internal	Semiconductor material
		fabrication design of	(Silicon, Germanium,
		Transistor	Compound Semiconductors)
		16. Understand the internal	• PN Junction diode and their
		fabrication design of IC	construction, Diode I-V
		17. Familiarity with curve	characteristics
		tracer for electrical	Understanding how changes
		measurements of	in temperature can affect
		resistors, diodes,	the electrical properties of
		transistors, etc.	semiconductors.
		18. Measure and compare	Brief introduction to basic
		the Silicon, Germanium	semiconductor devices like
		diode I-V (both forward	diodes, transistors, and
		and reverse)	their principle of operation.
		characteristics.	 Light Emitting Diode,
		19. Measure and compare	Photodiode, Zener Diode;
		the I-V (both forward and	Solar cells
		reverse) characteristics of	Bipolar Junction Transistors,
		diodes with different	NPN and PNP BJTs and their
		break down voltages.	characteristics
		20. Learn the use of LED and	Metal Oxide Semiconductor
		photodiodes.	

miconauctor Tee	chnician	-		
		22 23 24 25	 Construct and test Zener based voltage regulator circuit. Measure NPN and PNP I- V characteristics. Measure N-type and P- type MOS transistor characteristics. Construct and test a common emitter amplifier. Construct and test a FET amplifier. Measure the performance and characteristics of various semiconductor devices. 	 (MOS) Capacitor and MOS Transistor MOS Capacitor and MOS Transistor Characteristics Integrated Circuits (ICs) Identification of different ICs (Operational amplifiers, timers etc.) Various types of sensors: temperature, flow and vacuum. Test and measurement of Resistor, capacitor, inductor, Diode, Transistor, Sensor
Professional skills 100 Hrs. Professional Knowledge 20 Hrs.	Identify semiconductor Materials and Processes management. (Simulation)	Moc soft	 27. Identify and select various semiconductor materials, such as silicon, germanium, and gallium arsenide. 3. Selling cum simulation ware for leaning fabrication cess of semiconductor ces - Using simulation software to model the behavior of semiconductor devices. Fabricate simple semiconductor devices and test their performance. This could involve techniques like photolithography, etching, and deposition. Prepare semiconductor 	Semiconductor Materials: Detailed study of commonly used semiconductor materials, such as silicon, germanium, and gallium arsenide. Understanding their properties, advantages, and disadvantages. Doping: Understanding the concept of doping and how it changes the properties of semiconductors. Studying the process of creating n-type and p-type semiconductors. Oxidation: Learning about the oxidation process, its purpose in semiconductor fabrication, and how it affects the properties of the semiconductor. • Photolithography: Exploring the theory behind exposing photoresist patterns

31. 32. 33.	materials for device fabrication including processes like cleaning, etching, or surface passivation. the doping of semiconductors to create n-type and p-type materials. Carryout the photolithography, a key process in semiconductor fabrication. Demonstrate the deposition process. Process documentation understating • Check sheet • QC tools • Work instruction • Process parameter Window • Audit sheet • Design of experiment • Statistical Process control • Line Balancing • OEE	onto wafers using masks and light sources. • Resolution and alignment: Factors influencing the resolution of photolithography and methods for alignment. Deposition Processes : Learning about various deposition processes used in semiconductor fabrication, such as chemical vapor deposition (CVD), physical vapor deposition (CVD), and atomic layer deposition (ALD). Etching : Understanding the purpose of etching in semiconductor fabrication and studying different etching techniques, such as wet etching and dry etching. Ion Implantation : Studying the process of ion implantation, which is used to dope the semiconductor wafer. Understanding how it works and how it affects the properties of the semiconductor. Annealing : Learning about the
	 Window Audit sheet Design of experiment Statistical Process control Line Balancing 	Ion Implantation: Studying the process of ion implantation, which is used to dope the semiconductor wafer. Understanding how it works and how it affects the properties of the semiconductor.

	. <u> </u>		η
			electrical connections. Packaging : Studying the final steps in semiconductor fabrication, which involve packaging the semiconductor device to protect it and provide electrical connections.
Demonstrate assembly and packaging of semiconductor technology and Attain exposure to do assembly and packaging tools and operations	35. 36. 37.	Practical exposure to variety of semi-conductor packages made of plastic/ceramic; package types: DIP, PGA, BGA, CQFP, TQFP, SOIC, SOC, Lead frame, Flip chip etc. Microscopic Inspection and measurement of various package types. Observe various packaging techniques used to protect the semiconductor device and provide external electrical connections.	 Assembly and packaging process's introduction Package types Package design principles Lead frames Wire bonding (Different materials, Wire loop concept, Gold, silver and copper wire) Lead Finish and Trim – Solder Ball Attach Die attach Transfer Moulding Testing Wafer Dicing Glue and Chemicals in Various packaging
Perform wafer probe testing and physical characterization and attain practical exposure on wafer level and package level electrical and physical characterization; ESD safe tools used in work environment.	39.	to measure the properties of the fabricated semiconductor devices. Measurement of resistance, diode, transistor IV- characteristics, etc.	 Physical characterization of semiconductor structures: SEM and pre-SEM Sample preparation Electrical test and measurement Introduction to probe station, source measure units (SMUs) and Power supplies Wafer probing, measurement and data analysis
	Demonstrate assembly and packaging of semiconductor technology and Attain exposure to do assembly and packaging tools and operations Perform wafer probe testing and physical characterization and attain practical exposure on wafer level and package level electrical and physical characterization; ESD safe tools used in	Demonstrate assembly and packaging of semiconductor technology and Attain exposure to do assembly and packaging tools and operations35.36. operations36.937.Perform wafer probe testing and physical characterization and attain practical exposure on wafer level and package level electrical and physical characterization; ESD safe tools used in39.	Demonstrate assembly and packaging of semiconductor technology and Attain exposure to do assembly and packaging tools and operations35.Practical exposure to variety of semi-conductor packages made of plastic/ceramic; package types: DIP, PGA, BGA, CQFP, TQFP, SOIC, SOC, Lead frame, Flip chip etc.36.Microscopic Inspection and measurement of various package types.37.Observe various packaging techniques used to protect the semiconductor device and provide external electrical connections.Perform wafer probe testing and physical characterization and attain practical exposure on wafer level electrical and physical characterization; ESD safe tools used in work environment.38.Using testing equipment to measure the properties of the fabricated semiconductor devices.40.ESD safe protocols: practices and precautions while handling packaged

		41.	Measures relative intensity of charge in	its prevention and measurement
		42.	millivolt Charge polarity. Testing the charge behaviour of materials like Teflon, Perspex Silk, Cotton, Woolen. Pith ball pendulum - Single & pair to understand the basics concepts of ESD	
Professional skills 100 Hrs. Professional Knowledge 20 Hrs.	Demonstrate Semiconductor Device Applications.	 43. 44. 45. 46. 47. 48. 49. 	Use software tools to design and simulate digital and analog circuits using semiconductor devices. Design and implement logic gates, flip-flops and memory cells using CMOS technology. Build analog component such as operational amplifies, voltage regulators and analog filters. Design and analyze power semiconductor devices like MOSFETs, IGBTs and thyristors. Construct and test BJT and MOS transistor- based switching circuits. Understanding the Power Electronics applications & circuitry of Semiconductor devices like – IGBT- MOSFET, etc Fabricate simple circuits on a breadboard or	 Theoretical concepts of semiconductor devices like transistors are used in digital logic circuits, including gates, flip-flops, and memory cells. Use of semiconductor devices in analog circuits, such as amplifiers, oscillators, and filters. Application of power semiconductor devices in converters, inverters, and motor drives. Semiconductor devices are used in signal processing circuits for filtering, amplification, modulation, and demodulation. Application of optoelectronic devices in communication systems, display technologies, and solar energy conversion. Use of semiconductor devices in temperature, pressure,

iconauctor led	innician				
			printed circuit board		light, magnetic fields, etc.,
			(PCB), and test their		and in transducers for
			performance.		converting one form of
	t .	50.	Measure the output of a		energy into another.
			solar cell under different	•	Application of
			light conditions, or		semiconductor devices in
			testing the performance		integrated circuits for
			of an LED or laser diode.		various functions, including
	1	51.	Observe the activities		microprocessors, memory
			with semiconductor		chips, and application-
			sensors, such as		specific integrated circuits
			measuring temperature		(ASICs).
			with a semiconductor	•	Semiconductor devices viz.
			temperature sensor, or		microcontroller and sensors
			light intensity with a		application in automobiles
			photodiode.		enabling various systems
		52.	' Measure the gain of an		that enhance safety.,
			RF amplifier, or the		performance and overall
			frequency response of an		functionality. For engine
			RF filter.		control, Anti-lock Braking
	l l l l l l l l l l l l l l l l l l l	53.	Integrate semiconductor		Systems (ABS), Electronic
			sensors into Internet of		stability Control (ESC),
			Things (IOT) devices for		Airbag systems,
			data collection and		infotainment systems,
			control.		Advance Driver Assistance
	ľ	54.	Apply in smart homes,		systems (ADAS), Power
			wearable devices and		steering, climate control,
			Industrial IOT.		Keyless entry and start, LED
	ľ	55.	Examine semiconductor		lighting, Electric and Hybrid
			application in vehicle		vehicles etc.
			control systems, safety	•	In RF circuits for wireless
			features and		communication, radar
			infotainment.		systems, and microwave
	I. I	56.	Implement		applications.
			' semiconductor devices in	•	Emerging applications of
			medical imaging, monitor	-	semiconductor devices in
			equipment and		areas like flexible
			diagnostic tools		electronics, quantum
	r.	57.	Identify the application of		computing, and
					computing, and

		58.	semiconductor technology in medical electronics viz. X-ray machines, MRI scanners and wearable health devices. Experiment the basic concepts of PV technology like photon to electricity conversion, Series and parallel connections of solar PV Modules, VI characteristics of Solar module.	 bioelectronics. Importance of reliability and lifetime in various applications of semiconductor devices, and studying the factors that can affect these parameters. Understanding the Solar PV Technology as an application of Semiconductor material for green Energy generation
Professional skills 100 Hrs. Professional Knowledge 20 Hrs.	Follow Safety precaution and Environmental Considerations. Safety Hazards, Hazardous gas and chemical Handling, Environment Safety containment procedure for accident handling including first aid.	60. 61.	Proper handle, storage and dispose of hazardous chemical used in semiconductor manufacturing including acids, solvents and gases Implement safety data sheets (SDS) and chemical hygiene plans Use Personal protective equipment (PPE). Hanle safely of toxic and flammable gases, including installation and maintenance of gas delivery systems Care of electrical hazard awareness and precautions for working with high voltage equipment. Adherence to cleanroom procedures, including gowning, contamination	 Potential hazards in the semiconductor industry, including chemical hazards, electrical hazards, and radiation hazards. Learning about safety measures and best practices to mitigate these risks. Safe handling, storage, and disposal of chemicals used in semiconductor fabrication, including acids, bases, solvents, and toxic gases. Risks associated with high voltage equipment and electrostatic discharge (ESD), and the safety measures to protect against these risks. Potential sources of radiation in the semiconductor industry,

 such as ion implantation equipment and X-ray ithography systems, and the safety measures to protect against radiation exposure. 66. Maintain environmental regulations and measure the EMI Radiations to understand the regulations 67. Implement energy- efficient practices and equipment to reduce the carbon footprint of semiconductor manufacturing facilities. 68. Study and use of CO2 sensor, O2 sensor, Air temperature & humidity sensor, Atmospheric pressure sensor, PM 2.5 & PM10 sensor, UV index sensor. Types of waste generated by semiconductor manufacturing processes, including resource consumption, waste gas emissions. Types of waste generated by semiconductor manufacturing processes, including resource consumption, waste gas emissions. Types of waste generated by semiconductor manufacturing processes, and strategies for improving energy efficiency. Working ofCO2 sensor, O2 sensor, Air temperature & humidity sensor, Atting processes, and strategies for improving energy efficiency. Working ofCO2 sensor, O2 sensor, Air temperature & humidity sensor, Atmospheric pressure 	 adherence to cleanliness standards. 65. Monitor and maintain controlled environments for manufacturing. 66. Maintain environmental regulations and measure the EMI Radiations to understand the regulations 67. Implement energy- efficient practices and equipment to reduce the carbon footprint of semiconductor manufacturing facilities. 68. Study and use of CO2 sensor, O2 sensor, Air temperature & humidity sensor, Atmospheric pressure sensor, PM 2.5 & PM10 sensor, UV index sensor, Solar radiation sensor. 50. Study and use of CO2 sensor, D2 sensor, Air temperature & humidity sensor, Solar radiation sensor. 51. Monitor and maintain controlled environmental regulations to understand the regulations 52. The types of PPE used in the semiconductor manufacturing facilities. 53. Study and use of CO2 sensor, O2 sensor, Air temperature & humidity sensor, Solar radiation sensor. 54. Study and use of CO2 sensor, Solar radiation sensor. 55. Monitor and maintain controlled environmental regulations to understand the regulations 56. Maintain environmental regulations to understand the regulations 57. Implement to reduce the carbon footprint of semiconductor manufacturing processes, including resource consumption, waste generation, and greenhouse gas emissions. 50. Types of waste generated by semiconductor manufacturing, and the methods for treating and disposing of this waste in an environmentally responsible
sensor, PM 2.5 & PM10	 Energy consumption of semiconductor manufacturing processes, and strategies for improving energy efficiency. Working ofCO2 sensor, O2 sensor, Air temperature & humidity sensor, Atmospheric pressure

				 sensor, UV index sensor, Solar radiation sensor. How to Use appropriate personal protective equipment (PPE) such as gloves, goggles, masks, and protective clothing.
Professional skills 50 Hrs. Professional Knowledge 10 Hrs.	Interpret on chemical, gases, instrumentation, Automation, Vacuum Technology, HVAC etc.	70.71.72.73.	Study and use of Temperature and Humidity sensor, and different type of gas sensor. Study of Signal conditioning blocks likes Amplifiers, Filters and Converters. Study and use of PLC Ladder Programming. Working of Pressure Transmitter, Temperature Transmitter, Flow Transmitter Level Transmitter. How to Measure vacuum of close chamber using vacuum gauge and vacuum, Pump Vacuum.	 Understanding the concept of LEL Gas Detection Learn the detailed fundamentals of signal conditioning and its importance in instrumentation. PLC Role in automation and Process control. Understanding the concept of Component used in Automation like PLC, HMI, Different Pressure Transmitter, Control Valve, PID Controller. Types of sensor working used in chemical and gas industry like Pressure Transmitter, Temperature Transmitter, Flow Transmitter, Flow Transmitter. Knowledge of working of Vacuums Pump and Gauge. Understanding of HVAC System and its component like Thermostat, Furnace or Heat Pump, Air Conditioner, Ductwork, Air Filters, Vents and Registers, Fans and Blowers, Humidifiers and

				Dehumidifiers, Controls and Sensors: HVAC systems use various controls and sensors to monitor and regulate temperature, humidity, and air quality.
Professional skills 80 Hrs. Professional Knowledge 10 Hrs.	Handle and operate robotics system procedure.	74. 75. 76.	Program the path of 6 axis robot through PC. Control the motors through PC. Control the Arm and X-Y directions of the motors, using any external controller.	 Identify the Robotic Components & its application. Study the principles of pick and place robots, including their mechanical structure, actuators, sensors, and control systems. Working concept of DC Motor, Servo motor and stepper motor. Study of motor driver circuits and the different types of motor drivers available for DC motors.
Professional skills 50 Hrs. Professional Knowledge 10 Hrs.	Exposure to Equipment e.g. RF Generator, Temperature Controller, Pressure Gauges, Pumps, Conditioners, etc.	77. 78. 79.	Study and use of RF generator. Measurement of Guide wavelength, Free Space Wavelength and SWR using Measuring Line. To measure the forward & Return loss Characteristics and power division, isolation. Illustrate the characteristics of Isolator & Circulator. To study the characteristics of RF switch & RF Mixer. Use PID Controller as on/off Controller P, PI	 Working Concept of RF Switch, RF Mixer, Isolator, Circulator, Generator. Fundamental of Control system like open and close loop. Identify, select, Install, wire, configure, test the performance, maintain, and service various types of ON- OFF and PID controllers. Types of pressure gauge Bourdon Tube Pressure Gauge, Diaphragm Pressure Gauge, Capsule Pressure Gauge, Differential Pressure Gauge working and its

miconauctor le	chincian	1		
		81. 82. 83.	and PID Controller. Use PID Temperature Controller as on/off Controller. Interpret Working of Air Conditioners. Interpret Working of pressure gauge Bourdon Tube Pressure Gauge, Diaphragm Pressure Gauge, Capsule Pressure Gauge, Differential Pressure Gauge working	 application. Types of Conditioners and identification of its component used in AC Conditioners.
Professional skills 50 Hrs. Professional Knowledge	Operate and Handle of High Voltage System.	84.	operational working of dielectric Strength of Transformer Oil at 80KVolt	 The dielectric strength of insulating oil in high voltage Transformers Testing and understanding the insulation tester and
10 Hrs.		85.	Understanding the testing & measurement of electrical insulation to keep power system running smoothly.	 Clamp meter and Earth Leakage tester A relays and contactors are basic devices for protection of HVAC System.
		86.	Study and handling clamp meter to measure the current flowing through a conductor without touching it.	
		87.	Illustrate operation and working of Earth Leakage Detector that simply clamp around a conductor and gives a reading of the actual leakage current.	
		88.	Study the operating principle and working of various switchgear &	

	chinician		
Professional Knowledge ED -30 Hrs.	Read and apply engineering drawing for different application in the field of work.	protection devices to protect from various abnormal conditions such as under voltage, Neutral failure, over current, Over voltage, Earth fault, etc. ENGINEERING DRAWING Introduction to Engineering Draw Conventions Sizes and layout of drawing s Title Block, its position and co Drawing Instrument Freehand drawing of— Geometrical figures and bloc Transferring measurement fr hand sketches. Free hand drawing of hand to Drawing of Geometrical figures:	heets ontent ks with dimension om the given object to the free ools.
		 Angle, Triangle, Circle, Rectart Lettering & Numbering – Sing Symbolic representation– Different Electronic symbols Reading of Electronic Circuit Diag Reading of Electronic Layout drave Material Science Types metals, types of ferrour Introduction of iron and cast 	gle Stroke used in the related trades gram. wing. s and non-ferrous metals.
	WO		
Professional	Demonstrate basic	Unit, Fractions	
Professional Knowledge WCS -30 Hrs.	Demonstrate basic mathematical concept and principles to perform practical operations. Understand and explain basic science in the field of study.	Classification of unit system Fund C.G.S, M.K.S and SI units Measure	Fractions - Addition, subtraction, I fractions - Addition, sion. Solving problems by using

· · · · · · · · · · · · · · · · · · ·			
		Square and square root. Simple problems using calculator.	
		Applications of Pythagoras theorem and related problems. Ratio	
		and proportion.	
		Ratio and proportion - Direct and indirect proportions Percentage	
		Percentage - Changing percentage to decimal and fraction.	
		Material Science	
		Types metals, types of ferrous and non-ferrous metals.	
		Introduction of iron and cast iron.	
		Heat & Temperature and Pressure	
		Concept of heat and temperature, effects of heat, difference	
		between heat and temperature, boiling point & melting point of	
		different metals and non-metals.	
		Scales of temperature, Celsius, Fahrenheit, kelvin and conversion	
		between scales of temperature.	
		Basic Electricity	
		Introduction and uses of electricity, molecule, atom, how	
		electricity is produced, electric current AC, DC their comparison,	
		voltage, resistance and their units Conductor, insulator, types of	
		connections - series and parallel. Ohm's law, relation between	
		V.I.R & related problems. Electrical power, energy and their units,	
		calculation with assignments. Magnetic induction, self and mutual	
		inductance and EMF generation Electrical power, HP, energy and	
		units of electrical energy.	
		Trigonometry	
		Measurement of angles Trigonometrical ratios Trigonometrical	
		tables	
On The Joh Tusining (Dusingt Mould			
On The Job Training/Project Work			

SYLLABUS FOR CORE SKILLS

1. Employability Skills (Common for all CTS trades) (120 Hrs.)

Learning outcomes, assessment criteria, syllabus and Tool List of Core Skills subjects which is common for a group of trades, provided separately in <u>www.bharatskills.gov.in/ www.dgt.gov.in</u>

Ē

List of Tools & Equipment					
SEMICONDUCTOR TECHNICIAN (for batch of 24 candidates)					
S No.	Name of the Tools and Equipment	Specification	Quantity		
A. TRA	INEES TOOL KIT (For each additional u	init trainees tool kit Sl. 1-12 is re	quired additionally)		
1.	Connecting screwdriver	10 X 100 mm	12 Nos.		
2.	Neon tester 500 V.	500 V	8 Nos.		
3.	Screw driver set	Set of 7	12 Nos.		
4.	Insulated combination pliers	150 mm	8 Nos.		
5.	Insulated side cutting pliers	150mm	10 Nos.		
6.	Long nose pliers	150mm	8 Nos.		
7.	Soldering iron	25Watt, 240 Volt	12 Nos.		
8.	Electrician knife	100 mm	8 Nos.		
9.	Tweezers	150 mm	12 Nos.		
10.	Digital Multimeter	(3 3/4 digit) ,4000 Counts	12 Nos.		
11.	Soldering Iron Changeable bits	15Watt, 240 Volt	8 Nos.		
12.	De-soldering pump electrical heated, manual operators	230 V, 40 W	12 Nos.		
B. SHOP	rools, INSTRUMENTS – For 2 (1+1) u	nits no additional items are requ	iired		
13.	Steel rule graduated both in Metric and English Unit	300 mm,	4 Nos.		
14.	Precision set of screw drivers	T5, T6, T7	2 Nos.		
15.	Tweezers – Bend tip		2 Nos.		
16.	Steel measuring tape	3 meter	4 Nos.		
17.	Tools makers vice	100mm (clamp)	1 No.		
18.	Tools maker vice	50mm (clamp)	1 No.		
19.	Crimping tool (pliers)	7 in 1	2 Nos.		
20.	Magneto spanner set	8 Spanners	2 Nos.		
21.	File flat bastard	200 mm	2 Nos.		
22.	File flat second cut	200 mm	2 Nos.		
23.	File flat smooth	200 mm	2Nos.		
24.	Plier - Flat Nose	150 mm	4 Nos.		
25.	Round Nose pliers	100 mm	4 Nos.		
26.	Scriber straight	150 mm	2 Nos.		
		ļ	Į		

27.	Hammer ball pen	500 grams	1 No.	
28.	Allen key set (Hexagonal -set of 9)	1 - 12 mm, set of 24 Keys	1 No.	
29.	Tubular box spanner	Set - 6 - 32 mm	1 set.	
30.	Magnifying lenses	75 mm	2 Nos.	
31.	Continuity tester		6 Nos.	
32.	Hacksaw frame adjustable	300 mm	2 Nos.	
33.	Chisel - Cold - Flat	10 mm X 150 mm	1 No.	
34.	Scissors	200mm	1No.	
35.	Handsaw 450mm	Hand Saw - 450 mm	1 No.	
36.	Hand Drill Machine Electric with Hammer Action	13 mm	2 Nos.	
37.	First aid kit		1 No.	
38.	Bench Vice	Bench Vice - 125 mm		
		Bench Vice - 100 mm	1 No. each	
		Bench Vice - 50 mm		
ist of Ec	quipment			
39.	SMD Technology Kit with wall	SMD component	2 nos.	
	chart	identification board with		
		SMD components Resistors,		
		Capacitors, Inductors, Diodes,		
		Transistors & IC's packages.		
		Proto boards with readymade		
		solder pads for various SMD		
		Components. SMD Soldering		
10		Jig and Wall chart	2	
40.	Smart SMD tweezer Handheld	SMD tester tweezer with	2 nos.	
		Inductance, capacitance, resistance, and diode test		
		capabilities.		
41.	Multiple Output DC regulated	0-30V, 2 Amps, + 15V Dual	4 nos.	
	power supply	Tracking ,5V/5A, Display		
	1	digital, Load & Line		
		Regulation: ± (0.05 %+100		
		mV), Ripple & Noise <= 1		
		mVrms constant Voltage &		
		Current operation		
42.	DC Regulated Variable	0-30V/3A with numeric keypad,	2 nos.	
	Programmable DC Power	PC interface and LCD for		
	Supply	Voltage, Current & Power		
	Supply	voltage, carrent a rower		

conductor Te	echnician		
	Oscilloscope (4 Analog + 16 Digital Channel)	Oscilloscope (4 Analog + 16 Digital Channel) with 1.25GSa/s real time sampling rate, 12bit vertical resolution, 200µV/Div to 10V/div vertical sensitivity, 50Mpts Memory depth, 1,000,000 wfms/s waveform capture rate and 7 inch multi touch display.	
44.	35 MHz Arbitrary Waveform Generator with Digital Display for Frequency and Amplitude	35MHz, 2 Channel Arbitrary Function Generator with 125MSa/s sample rate, 16 bit vertical resolution, 7 Digit 240MHz frequency counter, min 150 built in waveform, 8Mpts record length, min 8 th order harmonic generator and 4.3 inch touch screen display.	1 no.
45.	6½ Digit Digital Multi-meter	6.5 Digit DMM with 2,200,000 count, 200mV to 1000V (DC); 200mV to 750V (AC) voltage range, 200uA to 10A (AC/DC) current range, any sensor measurement using software, max measuring speed 10 K rdgs/s, Real time trend display and histogram display function, standard interface like USB Device, USB Host, LAN, RS-232, GPIB, support U-disc storage, 256X64 LCD.	1 no.
46.	SMD Soldering & De soldering Station with necessary accessories	SMD Soldering & De-soldering, Station Digitally Calibrated, Temperature Control SMD, Soldering & De-soldering, Power Consumption 60 Watts, I/P Voltage 170 to 270 V, De- soldering 70-Watt, Temperature Range 180 to, 480° Centigrade.	1 no.
47.	3.2GHz Spectrum Analyzer with built-in Tracking Generator	9KHz to 3.2GHz Spectrum Analyzer with tracking generator, 1Hz frequency resolution, 10Hz RBW, DANL: <-	1 no.

	unnician		
		161 dBm (typ.), phase noise min. < -98 dBc/Hz @ 10 kHz, offset amplitude DANL to +20 dBm, advance measurement functions like harmonic distortion, Tol, emission bandwidth, channel power, occupied bandwidth, time domain power, CNR, adjacent channel power, pass / fail and 8-inch WVGA display, PC Interface: USB Host & Device, LAN(LXI)	
48.	LCR Meter	Test Parameter: L-Q, C-D, R-Q, Z -Q Basic Accuracy: 0.2% Rang mode: Auto, Hold	1 no.
		Measurement speed: Fast: 12, Med: 5.1, Slow: 2.5 (meas/sec)	
		Correction Function: Open/Short multi frequency Zeroing	
		Measurement Terminals: Five Terminals	
		Test Frequency: 100Hz, 120Hz, 1kHz, 10kHz,	
		Output impedance: 30E, 100E	
		Signal level: 0.3Vrms, 1Vrms	
		Measurement Display Range	
		Z , R: 0.1mℤ - 99.99Mℤ	
		C 100Hz/120Hz: 12F - 999992F	
		1KHz: 0.12F - 9999.92F	
		10KHz: 0.012F - 999.992F	
		L 100Hz/120Hz: 1pH - 99999H	
		1KHz: 0.1pH - 9999.9H	
		10KHz: 0.01pH - 999.99H	
		D: 0.0001 - 9.999	
		Q: 0.0001 - 9999	

Image resolution: 60F/S 1 no. •White Balance: Auto •White Balance: Auto	
49.Digital Video MicroscopeImage resolution: 60F/S1 no.	
•White Balance: Auto	
Light: Auto	
•Negative: Support	
•Mirror: Left/right, Up/Down	
•Freeze: Support	
Working distance: 50~155mm	
•56 LED Adjustable Compact Microscope	
Ring Light:	
•Provides intense and focused shadow-free illumination	
Lighting direction changeable	
•100,000 hours of life	
•Inside diameter of the ring light: 1.0" (27mm)	
•Overall outside diameter: 1.77" (45mm)	
50.Electrical Safety TrainerDemonstration of importance1 no.	
of earthing in any electrical	
device. Arrangement to study	
role of fuse and types of slow	
blow, high blow fuse in any electronic circuit.	
Arrangement to study the	
importance of MCB and it's	
working.	
51.Analog Circuits TrainingBreadboard for Circuit design10 no.PlatformDC power supply: +5V,1A	
(Fixed); +12V, 500mA (Fixed);	
±12V, 500mA (Variable) AC	
power Supply: 9V-0V-9V,	
500mA Function Generator:	
Sine, Square, Triangle (1Hz to	

		100KHz) Modulating Signal	
		Generator: Sine, Square,	
		Triangle (1Hz to 10KHz).	
		Voltage, current and frequency	
		on board LCD display. PC	
		Interface – Acquisition from	
		two analog input channel	
		Simulation Software	
		Modules: Diode	
		Characteristics (Si, Zener,	
		LED) Rectifier Circuits Diode	
		as Clipper Circuit, Diode as	
		Clamping Circuit, Zener as	
		voltage regulator.	10
52.	Digital Circuits Training Platform	Breadboard: Regular DC Supply: +5 V/1 A +12V/1A Clock	10 no.
		Frequency 4 different steps	
		from 1Hz – 100KHz Amplitude:	
		(TTL), 128x64 Graphical LCD,	
		Pulser Switches, Data Switches:	
		8 Nos, LED: 8 Nos. (TTL), Seven	
		Segment Display, Teaching &	
		Learning Simulation Software	
53.	RF Signal Generator (3.6 GHz)	Frequency Range: 3.6 GHz, -	1 no.
		100dBc/Hz Phase Noise,	
		+13dBm to -110dBm,	
		Amplitude Accuracy<0.5dB,	
		2ppm	
		Modulation: AM, FM, Phase,	
		IQ-modulation	
54.	Real Time Spectrum Analyzer	Frequency Range: 9 kHz to 1.5	1 no.
		GHz.	
		Resolution Bandwidth (-3 dB): 1	
		Hz to 3 MHz	
		Min141 dBm DANL	
		Frequency span: Max. 10 MHz	
		Built in Tracking Generator	
		USB Host, USB Device, LAN	
		(LXI)	
		Real-time Analysis Bandwidth:	
		upto 10 MHz	
		Upto 10" touch display	
		37	

55.	Semiconductor	Modelling	Semiconductor Devices	5 user
	Simulation Software		modelling Simulation Software	
			The Software License allows	
			access to all frameworks, one	
			tool at a time, for minimum 3	
			year subscription	
			License supports any	
			combination of products (if	
			available) on Linux, Windows	
			platforms	
			Software License should be	
			used anywhere on your wide	
			area network Software Licenses should	
			available in incremental blocks	
			Software License Framework	
			List	
			2D Core Process Simulator	
			Advanced Implantation	
			Simulator	
			Advanced 2D Optical	
			Lithography Simulator	
			Advanced Physical Etching and	
			Deposition Simulator	
			2D Deposition and Etch	
			Simulator	
			2D Device Simulation	
			Framework	
			2D Silicon Device Simulator	
			2D Device Simulator for	
			Advanced Materials	
			2D Device Simulator	
			2D Non-Isothermal Device	
			Simulator	
			Mixed Mode: 2D Circuit	
			Simulation for Advanced 2D	
			Devices Ferroelectric Field Dependent	
			Permitivity Model	
			2D Magnetic Device Simulator	
			2D Simulation Models for	
			Quantum Mechanical Effects	
			2D Opto electric Device	
			Simulator	
			Light Emitting Diode Simulator	

	cimicium				
				Vertical Cavity Surface Emitting	
				Laser Simulations	
				Semiconductor Laser Diode	
				Simulator	
				2D Amorphous and	
				Polycrystalline Device	
				Simulator	
				Organic Display: OLED and	
				OTFT Organic Display Simulator	
				Organic Solar: Organic Solar	
				Cell and Photo detector	
				Simulator	
				2D Small Signal Noise Simulator	
				3D Device Simulation	
				Framework	
				3D Device Simulator	
				3D Non-Isothermal Device	
				Simulator	
				3D Circuit Simulation for	
				Advanced Devices	
				3D Magnetic Device Simulator	
				3D Simulation Models for	
				Quantum Mechanical Effects	
				3D Opto electric Device	
				Simulator	
				3D Amorphous and	
				Polycrystalline Device	
				Simulator	
				3D Thermal Packaging	
				Simulator	
				Import capability from Athena	
				Interactive Tools	
				1D/2D Interactive Visualization	
				ТооІ	
				3D Interactive Visualization	
				ТооІ	
				Structure and Mesh Editor	
				3D Structure and Mesh Editor	
				Run-Time Environment	
				Integrated Layout Editor	
				Software should have 10	
				Interactive Tool licenses	
56.	Electronics	Circuit	Simulation	Circuit Design and Simulation	1 no.

	Software	Software with PCB Design	
	(25 users)	with Gerber and G Code	
		Generation, 3D View of PCB,	
		Breadboard View, Fault	
		Creation and Simulation.	
57.	CMOS Simulation Software (25 users)	A tool must support followings: Nanosheet field effect	1 no.
		transistor (NSFET) with 3mm technology.	
		A schematic editor and support various digital models.	
		A Verilog description of schematic for layout generation.	
		Facility to convert CMOS layout in schematic, compatible with DSCH, facility to convert MOSFET into FINFET structure.	
		Facility to Import/Export CIF layout from 3rd party layout tools.	
		FinFet device support with 2D cross section, 3D visualization, and layout construction.	
		It should have simulation of non-volatile memories such as EPROM, EEPROM and FLASH using double-gate MOS. 200- pages documentation including several aspects of logic design	
		It should support more than 200 basic circuits to be provided, which should be ready to simulate.	
58.	CPLD and FPGA Development	Onboard input-output, ADC,	10 nos.

	.chinician		
59.	Multi-Instruments with Analog	16-bit logic I/O, 8-bit ADC & DAC interface, 3 ½ digits seven segment display, LCD Interface, push buttons, hex keypads, switches FPGA Daughter Card specifications: Xilinx Family: Spartan 3, Device density: 400k gates, On board: 8 MHz crystal, Master reset Key: For hardware reset. Configuration Method: JTAG CPLD Card: Device density: 2400 gates, 108 macro cells, 8 MHz crystal, JTAG interface (boundary scan) Consists of dual-channel Digital	2 nos.
	and Digital Boards	Storage Oscilloscope (50 MHz), sine, square, ramp, triangle, and arbitrary waveforms generator (DC to 4MHz), real time signal analyser and logic analyser Digital I/O for testing.	2 1103.
60.	Data Acquisition with sensors: temperature, humidity, noise, vibration, light, airborne particles, flow, vacuum sensors.	Data Acquisition with sensors: temperature, humidity, noise, vibration, light, airborne particles, flow, vacuum sensors.	1 no.
61.	Microcontroller kits (8051) along with programming software (Assembly level Programming) With six important different application modules	Core 8051 MCU clocked at 11.0592 MHz, supporting both programming modes Keypad and computer, LCD for both programming and run mode, ready to run programmer to support family of controllers AT89C52, DC Power Supplies +12V, -12V, +5V & -5V, Breadboard to make circuits, Learning content through	2 nos.

	chnician		
		simulation Software and	
		following application modules.	
		1. Input Interface: 4x4 Matrix	
		Keypad, ASCII Keypad, Four	
		Input Switch	
		2. Display 16X2 LCD, Seven	
		Segment, LED Bar Graph	
		DAQ: 4ch analog 10bit, 22 DIO	
		resolution,6MHz Frequency	
		Counter (square wave), DAQ	
		with PC interface software	
62.	Different Microcontroller /	MCU PIC16F877A, 4MHz,	2 nos.
	Processor Training and	Onboard programmer will	
	Development Platform for AVR,	program PIC Devices, USB Port	
	PIC, ARM and Arduino.	MCU ATMEGA8515 ,8MHz,	
		onboard programmer will	
		program ATMEGA series	
		microcontroller, USB Port MCU	
		LPC2148, 12MHz, LED 8Nos,	
		ADC 10 bit 10Nos, DAC 10bit,	
		USB and RS232, RTOS support, JTAG Connector, USB2.0,	
		Onboard Zigbee, I2C, SPI, RTC,	
		DC motor, PWM, Sensor LM35,	
		Display 16X2 LCD Display,	
		Motor Drive: L293D 600mA (5-	
		12V), Programmer USB	
		Interface. Microcontroller	
		ATmega328p (Arduino Based),	
		16MHz, Digital I/O Pins: 14 (of	
		which 6 provide PWM output),	
		Flash Memory: 16KB (of which	
		2KB used by boot loader) Each	
		platform should have Bread DC	
		Power Supplies +12V, -12V,	
		+5V & - 5V, Breadboard to	
		make circuits.	
63.	Wireless Communication	Core 8051 MCU clocked at	2 nos.
	modules for interfacing with	11.0592 MHz, supporting both	
	microcontrollers	programming modes Key Pad	
		and PC, LCD for both	
		programming mode and run mode, ready to run	
		programmer to support family	

		1	1
		of controllers AT89C51/52 & 55, DC Power Supplies +12V, - 12V, +5V & - 5V, Breadboard to make circuits, detailed learning content through simulation Software and following application modules: RFID Card Reader, Finger Print, Zigbee, GPS, GSM, Bluetooth and WiFi	
64.	Semiconductor packages Demonstration Board	Observe the variety of semi- conductor packages made of plastic/ceramic; package types: DIP, PGA, BGA, CQFP, TQFP, SOIC, SOC etc.	
65.	PCB Design and Development Setup	Working area: 200mm × 300mm × 50mm, Resolution: 0.5μm, 0.03 mm Drill Performance, 40,000 RPM Spindle speed, Automatic Tool Change, Tool Length Detect and PCB Surface Detect, at least 100 strokes / min drill performance. Should be provided with Dust Enclosure	1 no.
66.	Semiconductor Energy band gap apparatus for diode	DC Power Supply: +15V, 2.5A +6V, 2.6 A Diode : O A79 P - N junction Germanium Type PC Interfacing using USB/RS232 ports and supporting software Switch : 1 Pole, 2 Way Display: 16 x 2 LCD Measurement Voltage: 0 to 15V Current: 0 to 50µA (approximate) Temperature: 0 to 60°C Oven Height : 77mm Width: 74mm Coil: Nichrome Wire Dimensions (mm): W 345 x D 240 x H 110 Fuse : 0.5A	1 no.

	connician		
67.	Semiconductor Four probe Band Gap measurement Apparatus	 Four Probes Contacts: Spring loaded Space between Probes: 2 mm ±2% Probes: Collinear Sample Material: Germanium crystal Oven Maximum Temperature: Ambient to 150 °C Heater Resistance: 45Ω Heater Voltage: 50V AC Temperature Sensor: LM35 (0 to 150 °C) Measurement Unit Display: LCD 16 x 2 characters Measuring Parameter: Current, voltage, temperature simultaneously Constant Current Generator Current Range : 0 to 15mA (approximately) Resolution: 1mA Open Circuit Voltage: 18V Probes are mounted on a Teflon bush, which ensure a good electrical insulation PC Interfacing using USB/RS232 ports and 	1 no.
68.	Semiconductor behavior in magnetic field – Hall effect	supporting software 1) Gauss and Tesla meter Nvis 621	1 no.
		Microcontroller Based LCD Display for Measurement of Magnetic Field in Gauss and Tesla, With PC Interface facility. Sensor : InAs for better sensitivity Range : 0-20kG Special feature: Indicate the direction of the magnetic field Mains: 230V AC ±10%, 50Hz PC interface: RS232 2) Measurement unit Nvis 622	

		Probe current: 20Ma	
		(maximum)	
		Heater current: 0-700mA	
		Temperature: 0-100°C	
		Hall voltage: 200mV	
		(maximum)	
		Mains: 230V AC ±10%, 50Hz	
		PC Interfacing using USB/RS232	
		ports and supporting	
		software	
		A) Hall probe	
		Crystal: p-type lightly doped	
		Resistivity: As on probe	
		Thickness: As on probe	
		B) Temperature Sensor:	
		Temperature is Measured	
		with PT-100	
		3) Constant Current Power	
		Supply Nvis 623	
		Current range: 0 to 3.5A	
		Output voltage: 20V	
		Display: LCD, 16 x 2	
		Mains: 230V AC ±10%, 50Hz	
		4) Electromagnet	
		Poles: 25mm diameter	
		Coils: 2 Nos.	
		Resistance: 5Ω (approximate)	
		Input current: 3.5A at 20V	
		-	
<u> </u>		Weight: 16kg	1
69.	EMI solution for semiconductor devises	Low frequency magnetic field	1 no.
		1Unit (μT) Measuring range	
		Resolution Accuracy 20.00	
		200.0 μT 0.01μT, 0.1 μT ±12% +	
		5 digits at50/60 Hz	
		0 /	
		Unit (mG) Measuring range	
		Resolution Accuracy 200.0	
		2000 mG 0.1mG, 1 mG ±12% +	
		5 digits at50/60 Hz	
		Low frequency electromagnetic	
		field Unit V / m Measuring	
		range Resolution Accuracy	
		50V/ m 2000V / m 1V/ m	
		50 v/ III 2000 v / III 1 v/ III	

		±7% + 20 digits at50/60 Hz	
		High frequency electromagnetic field	
		Unit mV / m, V /m Measuring range Resolution Accuracy 30.0mV / m 11.00V / m 0.01,0.1 mV / m 1.0dB at 1V / m 0.01V/ m and900 MHz, >1V / m are only used for reference	
		Unit μ W / cm ² Measuring range Resolution 0.02 32.0 μ W / cm ² 0.01,0.1 μ W / cm ²	
		Unit μW / m², mW /m² Measuring range Resolution 2.3μW / m² 320.9 μW / m² 0.1,1 μW / m² 0.1mW / m²	
		Unit mA / m Measuring range Resolution 0.07 29.1-mA / m 0.01,0.1-mA / m	
		Bandwidth High frequency: 50 MHz 3.5GHz Low frequency: 50/60Hz Number of sensors:	
		Magnetic field: 3, Electromagnetic field:1 Measuring rate - 1Hz	
70.	Thermal conductivity – Seeback	Display LCD (16 x 2)	1 no.
	& Peltier Effect	Temperature	
		Range: 0 - 150°C	
		Resolution: 0.1°C	
		Voltage	
		Range: 0 - 2000mV	
		Resolution: 0.1mV	
		Glass Beaker: 250ml	
		Fan: 3V	
		Adaptor Input: 220 - 240V, 50 /	
		46	

		1	
		60Hz	
		Adaptor Output: 5V, 1A	
		Dimension (mm): W 250 x D 300 x H 20	
		PC Interfacing using USB/RS232 ports and supporting software	
71.	Desktop computer with latest configuration	Desktop computer with latest configuration	12 nos.
72.	Electrostatic Charge &	Plates with Maximum surface	1 no.
	Discharge Training System	Wall Plate (approx.): 300mm (L) x 600mm (W) x 3mm (H)	
		Foot Plate (approx.): 420mm (L) x 220mm (W)	
		Low battery Indication: Warning at 7.5 V	
		ESD Antistatic Wrist Strap: 1no.	
		Electrostatic Discharge (ESD) Tester	
		Battery: 9 Volt	
		Battery Indication: Visual by different color LED's Digital	
		This platform should also have a training kit to demonstrate the concept of Electrostatic charge and discharge.	
		Display: Measures relative intensity of charge in millivolt Charge polarity	
		Indicators: Blue LED - Negative charge, Green LED - Positive charge	
		Rods: Teflon, Perspex	
		Clothes: Silk, Cotton, Woolen	
		Pith ball pendulum: Single & pair is provided for different Observations	

conductor Te	echnician		
73.	Understanding the Basic	DC Power Supply: 5V, 200mA	2 nos.
	Electricity Fundamentals	AC Power Supply: 6V, 1A	
		Relay: 5V	
		Galvanometer: 30 - 0 - 30	
		Galvanometer Resistance: 80W	
		Light Bulbs: 6V	
		Potentiometers: 25W, 1W, 10kW, 1W	
		Switch: 1 Pole, 2 Way Toggle type	
		Core Types: E, I, U	
		Coils	
		No. of Turns Wire Dimension Maximum Current Inductance	
		(mm) (Amp) (Approximate)	
		200 Turn 0.818 1.46 590 mH	
		400 Turn 0.573 0.728 2.3 mH	
		800 Turn 0.404 0.363 9.2 mH	
		1600 Turn 0.251 0.144 34.2 mH	
		3200 Turn 0.170 0.072 134 mH	
		Fuse : 1A	
		To be supplied with Learning simulation software	
74.	Fabricating Transistors using Diodes	DC Power Supply: Fixed: +5 V, - 5 V, +12 V & -12 V	2 nos.
		Variable: +1.2 to +10 V & -1.2 to -10 V	
		Transistor: BC547 & BC557	
		Ammeter: Range: 1µA to 200 Ma	
		Display: 3½ digits	
		Voltmeter: Range: 1mV to 200 V	
		Display: 3½ digits	

		Mains Supply: 230 V AC ±10%	
		Dimension (mm): W 450 x D 280 x H 11	
		Provided with Data acquisition facility:-	
		Analog Inputs : 4 Inputs with 10 bit resolution	
		Analog Output:2 Output 10 bit resolution	
		Digital Inputs : 11 TTL Inputs	
		Digital Outputs: 11 TTL Outputs	
		Unity gain amplifier: 2 (0 to 10)	
		Counter: 0 to 6 MHz (square wave)	
		Power Supply: 12VDC	
		PC Interface: USB 2.0	
		Interactive simulation software provided for learning enhancement on the given topic.	
75.	Fabricating IC using Transistors	Fixed DC Power Supply	2 nos.
		DC Output Voltage (Fixed): +12V, -12V, +5V, - 5V	
		Current (Max.) : 200mA	
		Ripple :<2 mVrms	
		Power Supply : 230 V ±10%, 50 / 60 Hz	
		Dimensions (mm): W 85 × D 150 × H 65	
		Weight : 250gm (approx.)	
		Provided with Data acquisition facility :-	
		Analog Inputs : 4 Inputs with 10 bit resolution	
		Analog Output:2 Output 10 bit resolution	

		Digital Inputs : 11 TTL Inputs	
		Digital Outputs: 11 TTL Outputs	
		Unity gain amplifier: 2 (0 to 10)	
		Counter: 0 to 6 MHz (square wave)	
		Power Supply: 12VDC	
		PC Interface: USB 2.0	
		Interactive simulation software provided for learning enhancement on the given topic.	
76.	VI Characteristics of Various Semiconductor Diodes	On Board DC power supply: +12V DC	2 nos.
		Ammeter	
		Range:1µA to 200mA	
		Display:3½ digit	
		Voltmeter	
		Range :1mV to 200V	
		Display:3½ digit	
		Facility to test Silicon, Germanium, LED , Zener Diodes in forward and reverse mode	
77.	Transistor Characteristics	DC Power Supply: Fixed: +5 V, - 5 V, +12 V & -12 V	2 nos.
		Variable: +1.2 to +10 V & -1.2 to -10 V	
		Transistor: BC547 & BC557 Ammeter:	
		Range: 1µA to 200 Ma	
		Display: 3½ digits	
		Voltmeter: Range: 1mV to 200 V	
		Display: 3½ digits	
		Facility for testing PNP & NPN transistors in CC – CB – CE Modes	

78.	MOSFET – FET – UJT	DC Fixed Power Supply: -5V,	2 nos.
	Semiconductor devices	+15V, +35V	
	Characteristics	DC Variable Power Supply: 1.5V to 14 V 1.5V to 34V	
		Voltmeter: 0-200V	
		Ammeter: 0-200mA	
		Bread Board	
		Dimension: 175x61x10mm	
		Distribution strips: 2	
		Distribution holes: 200	
		Terminal Strips: 1	
		Terminal holes: 640	
		Resistor Bank: M.F.R. 100E 1W (3 Nos.): M.F.R. 470E 1W (3 Nos.): M.F.R. 1K 1W (3 Nos.)	
		Variable Resistances: 5 KΩ Ten turn Potentiometer (1 No.): 10 KΩ Ten turn Potentiometer (1 No.): 5 KΩ Single turn Potentiometer (1 No.) Fuse: 500 mA, slow blow	
79.	Experiment with Solar Energy – An application of Silicon	Solar Panel: Consists of 6 solar cells	1 no.
	Semiconductor material	Maximum Voltage of each solar cell: 2V DC	
		Maximum Current of each solar cell: 150mA	
		DC Voltmeter : 0-10V	
		DC Ammeter : 0-500mA	
		DC Potentiometer: 5K	
		Rechargeable Ni-Cd Battery: 1.2V	
		DC Bulb : ~2V, ~250mA	
		DC Fan : ~2V, ~400mA	
		DC FM Band Radio : 12V DC	
		Solar PV Module Analyzer :	

		Provided with PC interface facility and its analysis software	
		Power Supply : +5V DC	
		DC Voltage Range : 0-50V	
		DC Current Range : 10A	
		Measurement	
		Max. Voltage (Vmax) : at P max	
		Max. Current (Imax) : at P max	
		Voltage at Open Circuit :Voc	
		Current at Short Circuit : Isc	
		Instant Power : W Battery : 9V	
		Rheostat 100Ω, 15A	
80.	Photoconductivity Experiment of Semiconductor material	Planck's Constant Experiment by using -	1 no.
		DC Power Supply : 0-5 V	
		LED Type : Super bright	
		Size : 5 mm	
		Colours : Blue, Green, Orange, Red and Yellow	
		DC Voltmeter	
		Display : 3½ digit	
		Range : 200mV - 200V	
		DC Ammeter	
		Display : 3½ digit	
		Range : 2µA- 200mA	
81.	Power Electronics Semiconductor Devices	Size of Breadboard : 172.5 mm × 128.5 mm	2 nos.
	Experiment Lab	DC Power Supply : +5 V, -5 V	
		500 mA,	
		+12V, -12 V 500 mA	
		+15 V, 250 mA	
		+35V, -35V, 250 mA AC Power Supply : 18V-0V-18V,	
		0V-15V	
		On board Firing Circuits	

82.Sensor Signal Conditioning System7" capacitive display 7" capacitive display1 no.7" capacitive display7" capacitive display 7" capacitive display1 no.82.Sensor Signal Conditioning System7" capacitive display 7" capacitive display1 no.77" capacitive display 7" capacitive display1 no.77" capacitive display 7" capacitive display1 no.77" capacitive display 7" capacitive display1 no.82.Sensor Signal Conditioning 7" capacitive display7" capacitive display 7" capacitive display 7" capacitive display1 no.77" capacitive display 7" capacitive display<				
82. Sensor Signal Conditioning 7" capacitive display, 2004/2004 7" capacitive display, 2100 82. Sensor Signal Conditioning 7" capacitive display, 2004/2004 7" capacitive display, 2004/2004 82. Sensor Signal Conditioning 7" capacitive display, 2004/21 capacitor 1 no. 1000 7" capacitive display, 2004/2004 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000				
82. Sensor Signal Conditioning 7" capacitive display, 2007/1100 1 no. 7. Sensor Signal Conditioning 7" capacitive display, 1 100 1 no. 7. Sensor Signal Conditioning 7" capacitive display, 1 100 1 no. 7. System 7" capacitive display, 1 100 1 no. 7. Yariable Gin 1,100 1 no. 10. 10.000 10.000 10.000 10. 10.000 10.000 1.000 10. 10.000 1.000 1.000 10. 10.000 1.000 1.000 10. 10.000 1.000 1.000 10. 1.000 1.000 1.000			Amplitude : 12V	
64 Duty cycle control of "Gate" Signal is 0 to 100% SCR Assembly : 4 SCRs 2P4M, 400V/2A Power Devices : IGBT-G4BC205, MOSFET- IRFZ44N, UJT-2N2646, DIAC- DB3, TRIAC-BT136, PUT- 2N6027 Pulse transformer on board : 2 nos. PT4502 1:1 and one is PT4503 1:1.1 Circuit Components on board: Electrolytic Capacitor 0.1uF, 63V Metalized Capacitor 0.3uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load Selector : 6 load resistances- 47E/7W, 120E/5W, 270E/5W, 270E/5W, 270E/5W, 220V/110V, 50Hz/60Hz Power Electronics Modelling 85mulation Software - 7" capacitive display, 1 no. Connectivity USB, Ethernet & HDMI, Square Wave Generator 1 no. connectivity USB, Ethernet & HDMI, Square Wave Generator 1 no. connectivity USB, Ethernet & HDMI, Square Wave Generator 1 no. connectivity USB, Ethernet & HDMI, Square Geni 1-10 Non 1 no. variable Geni 1-10 Non 1 no. Up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : up to 30KHz				
Signal is 0 to 100% SCR Assembly : 4 SCRs 2P4M, 400V/2A Power Devices : IGBT-G4BC205, MOSFET- IRFZ44N, UJT-2N2646, DIAC- DB3, TRIAC-BT136, PUT- 2N6027 Pulse transformer on board : 2 nos. PT4502 1:1 and one is PT4503 1:1:1 Circuit Components on board: Electrolytic Capacitor 1uF, 63V Metalized Capacitor 0.3uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances - 47E/7W, 120E/SW, 270E/SW, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software -82.Sensor Signal Conditioning 				
SCR Assembly : 4 SCRs 2P4M, 400V/2APower Devices : IGBT-G4BC205, MOSFET- IRFZ44N, UJT-2N2646, DIAC- DB3, TRIAC-BT136, PUT- 2N6027Pulse transformer on board : 2 nos. PT4502 1:1 and one is PT4503 1:1:1Circuit Components on board: Electrolytic Capacitor 1uF, 63V Metalized Capacitor 0.1uF, 63V Metalized Capacitor 0.3uF, 63VDiode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/SW, 270E/SW, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50H2/60Hz82.Sensor Signal Conditioning System7" capacitive display, Connectivity USB, Ethernet & HDMI, Square Wave Generator : up to 40KHz Inverting Amplifier : Variable1 no.			Duty cycle control of "Gate"	
400V/2APower Devices : IGBT-G4BC20S, MOSFET- IRF244N, UJT-2N2646, DIAC- DB3, TRIAC-BT136, PUT- 2N6027Pulse transformer on board : 2 nos. PT4503 1:1:1Circuit Components on board: Electrolytic Capacitor 1uF, 63V Metalized Capacitor 0.1uF, 63V Metalized Capacitor 0.3uF, 63VDiode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/5W, 270E/SW, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50H2/60H282.Sensor Signal Conditioning System7" capacitive display, Connectivity USB, Ethernet & HDMI, Square Wave Generator : up to 30KH2 High Pass Filter : after 40KHz Inverting Amplifier : Variable1 no.			Signal is 0 to 100%	
82.Sensor Signal Conditioning SystemPower Devices : IGBT-G4BC20S, MOSFET- IRFZ44N, UJT-2N2646, DIAC- DB3, TRIAC-BT136, PUT- 2N6027 Pulse transformer on board : 2 nos. PT4502 1:1 and one is PT4503 1:1:1 Circuit Components on board: Electrolytic Capacitor 0.1uF, 63V Metalized Capacitor 0.1uF, 63V Metalized Capacitor 0.3uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 Ioad resistances-47E/7W, 120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software –82.Sensor Signal Conditioning System7" capacitive display, connectivity USB, Ethernet & HDMI, Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : <th></th> <th></th> <th>SCR Assembly : 4 SCRs 2P4M,</th> <th></th>			SCR Assembly : 4 SCRs 2P4M,	
82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDML , Square Wave Generator 			400V/2A	
B3.DB3, TRIAC-BT136, PUT- 2N6027Pulse transformer on board : 2 nos. PT4502 1:1 and one is PT4503 1:1:1Circuit Components on board: Electrolytic Capacitor 1uF, 63V Metalized Capacitor 0.1uF, 63V Metalized Capacitor 0.3uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/SW, 270E/SW, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software -82.Sensor Signal Conditioning System7" capacitive display, Connectivity USB, Ethernet & HDMI, Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter :				
2N6027Pulse transformer on board : 2 nos. PT4502 1:1 and one is PT4503 1:1:1Circuit Components on board: Electrolytic Capacitor 1uF, 63V Metalized Capacitor 0.1uF, 63V Metalized Capacitor 0.3uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/SW, 270E/SW, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : Variable Gain 1-10 Non Inverting Amplifier : Variable1 no.			IRFZ44N, UJT-2N2646, DIAC-	
82.Sensor Signal Conditioning System7" capacitive display, Connectivity USB, Ethernet & HDMI, Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : variable				
82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : VariableP T4503 1:1:1 Circuit Components on board: Electrolytic Capacitor 1uF, 63V Metalized Capacitor 0.1uF, 63V Metalized Capacitor 0.3uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software -			Pulse transformer on board : 2	
82.Sensor Signal Conditioning System7" capacitor JuF, 63V Metalized Capacitor 0.33uF, 63V Diode 1N4007, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances-47E/7W, 120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software -1 no.82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : up to 30KHz Inverting Amplifier : Variable1 no.			nos. PT4502 1:1 and one is	
82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : VariableElectrolytic Capacitor 1uF, 63V Metalized Capacitor 0.1uF, 63V Metalized Capacitor 0.33uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances - 47E/7W, 120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software -			PT4503 1:1:1	
82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : VariableMetalized Capacitor 0.1uF, 63V Metalized Capacitor 0.33uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software –			Circuit Components on board:	
82.Sensor Signal Conditioning System7" capacitive display , connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : VariableMetalized Capacitor 0.33uF, 63V Diode 1N4007, Inductor 68mH, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software -82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz Inverting Amplifier : Variable1 no.			Electrolytic Capacitor 1uF, 63V	
63VDiode 1N4007, Inductor 68mH, Inductor 10mH Load selector : 6 load resistances- 47E/7W, 120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz82.Sensor Signal Conditioning System7" capacitive display, Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable			Metalized Capacitor 0.1uF, 63V	
82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable1 no.				
82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable1 no.			Diode 1N4007, Inductor 68mH,	
82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 30KHz High Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable1 no.			Inductor 68mH, Inductor 10mH	
120E/5W, 270E/5W, 2K2/2W, 1K/1W, 1K/10W Power Supply (Mains) : 220V/110V, 50Hz/60Hz Power Electronics Modelling &Simulation Software –82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable			Load selector : 6 load	
1K/1W, 1K/10WPower Supply (Mains) : 220V/110V, 50Hz/60HzPower Electronics Modelling &Simulation Software -82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable			resistances- 47E/7W,	
Power Supply (Mains) : 220V/110V, 50Hz/60HzPower Electronics Modelling &Simulation Software -82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable			120E/5W, 270E/5W, 2K2/2W,	
Power Supply (Mains) : 220V/110V, 50Hz/60HzPower Electronics Modelling &Simulation Software -82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable				
220V/110V, 50Hz/60HzPower Electronics Modelling &Simulation Software -82.Sensor Signal Conditioning System7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable				
&Sensor Signal Conditioning7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable			,	
82. Sensor Signal Conditioning System 7" capacitive display , Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable			Power Electronics Modelling	
System Connectivity USB, Ethernet & HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable			&Simulation Software –	
HDMI , Square Wave Generator : up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable	82.			1 no.
: up to 40KHz Low Pass Filter : up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable		System		
up to 30KHz High Pass Filter : after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable				
after 40KHz Inverting Amplifier : Variable Gain 1-10 Non Inverting Amplifier : Variable				
: Variable Gain 1-10 Non Inverting Amplifier : Variable				
Inverting Amplifier : Variable			- · ·	
			Gain 2-10 Differential	
Amplifier : Variable Gain 1-10				

onauctor Te	cimician	1	
		Instrumentation Amplifier :	
		Variable Gain 10-20 F/V	
		converter : 1KHz –1V 10 KHz –	
		10V V/F Converter : 1V – 1KHz	
		10V – 10 KHz A/D Converter : 4	
		Channel (0-5V) D/A Converter :	
		1 Channel (0-3.3V)	
		Input/Output Ports : 4-IP / 4-0P	
83.	Automation training kit	Toggle switches : 4 nos. Push to	1 no.
		ON switches : 3 nos. Proximity	
		sensor : 1 no. Selector switch :	
		1 no. Visual indicators : 4 nos.	
		Audio indicator : 1 no. DC	
		motor : 1 no. Relay card : 1 no.	
		(Contains 2 relays) Contactor :	
		1 no., PLC with 12 Digital	
		Inputs, 8 Digital Outputs and	
		Programming cable with	
		Ladder Programming and Simulation Software.	
84.	Industrial Sensor Kit		1 no.
04.		For Temperature	1110.
		Measurement	
		RTD/Thermocouple	
		temperature display: 1 no.	
		Display: 4 digit, 7 segment	
		digital display Keys: 3 for	
		digital setting Input type: RTD	
		(PT100) & thermocouple	
		Resolution: 1 or 0.1 degree S	
		S S	
		Thermistor temperature	
		Thermistor temperature	
		display: 1 no. Display: 4	
		display: 1 no. Display: 4 digit«, 7 segment digital	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor Resolution: 1 or 0.1 degree S	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor Resolution: 1 or 0.1 degree S RTD sensors: 1 no. Type : RTD	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor Resolution: 1 or 0.1 degree S	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor Resolution: 1 or 0.1 degree S RTD sensors: 1 no. Type : RTD	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor Resolution: 1 or 0.1 degree S RTD sensors: 1 no. Type : RTD (PT100) Wire: 3 wire	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor Resolution: 1 or 0.1 degree S RTD sensors: 1 no. Type : RTD (PT100) Wire: 3 wire Temperature range: (-99 to	
		display: 1 no. Display: 4 digit«, 7 segment digital display Keys: 3 for digital setting Input type: Thermistor Resolution: 1 or 0.1 degree S RTD sensors: 1 no. Type : RTD (PT100) Wire: 3 wire Temperature range: (-99 to 850°C) Thermocouple sensors	

		Temperature measuring	
		range :-50 to 99°C.	
		For Pressure Measurement	
		Capacitive pressure	
		transducer: 1 no. Range: 0-90	
		Psi Output: 4-20mA Type:	
		Capacitive Load cell: 1 no.	
		Maximum bearable weight:	
		5kg. Load cell type : Strain	
		guage/shear beam Output :	
		10 gram/10mV Current	
		display : 1 no. Display : 4 digit,	
		7 segment digital display Keys	
		: 3 for digital setting Input	
		type : Current (4-20mA)	
		Supply voltage : 230V AC	
		For Level Measurement	
		Capacitive transducer : 1 no.	
		Housing enclosure : Cast	
		aluminum weather proof	
		Supply : +24V DC Response	
		time : 0.5s to 5 sec Output : 4	
		to 20mA Range : 230mm User	
		interface : 4 digit display with	
		4 keys and LED Float switch :	
		, 1 no. Contact rating : 10 W.	
		Switching voltage : 220 V.	
		Contact resistance : 100 m?.	
		Current display : 1 no. Display	
		: 4 digit, 7 segment digital	
		display Keys : 3 for digital	
		setting Input type : Current	
		(4-20mA) Resolution : 1 or 0.1	
		degree Supply voltage : 230V	
		AC	
85.	6-Axis Robotic Kit	Work Area (mm) : 400 x 400	1 no.
		Gripper AOF : 180°	
		Gripper Payload : 250g	
		Stepper Motors : 3 nos.	
		Servo Motors : 4 nos.	

	.cmincian		
		Control System : PWM 1520 µsec Neutral Drive type X & Y Axis: Belt Driven – 2 Axis Z Axis: Servo Motor Driven – 4 Axis	
86.	Air Conditioner Training kit	 Compressor wobble plate type condenser parallel flow type suitable for car Evaporator serpentine type with thermostatic expansion valve, blower motor and grill. Receiver with sight glass and other accs. All ideal controls and safety controls for car ac. Single phase electric motor 1.0 HP to run the compressor evaporator fan and to operate magnetic clutch of compressor. Other accs. like on/off switch, fan speed selector and complete wiring jack and clips. Digital temperature indicator in test chamber. 	1 no.
87.	RF Generator Training KIT	Microwave GeneratorFrequency Range : 2.2 - 3GHzcontinuously variable Display :16 x 2 LCD Display , RF level :5mW Output Level Variation :10 - 20 dB Operating Modes :Sweep, CW, Int. AM, Int. FM,Ext. AM, PC communicationModulatingVSWR MeterSensitivity : 0.1μV for 200 ohminput impedance for full scaledeflectionAlso should be provided withIsolator	1 no.

		Circulator	
		RF Mixer	
		RF Switch	
		Power divider	
88.	Breakdown voltage training	Mains Supply: 230V AC ±10%,	1 no.
	system	50Hz Single Phase Variac :	
		230V/ 0-270V High Voltage	
		Source : 80kV, 20mA HV	
		Control Motor Type : Servo	
		RPM : 500 (No Load) Voltmeter	
		: 0 to 100kV	
89.	Industrial Electrical Protection	Over current relay: 1-63	1 no.
69.		A(adjustable) : Default- 40A	1 HO.
	Training System		
		Earth fault relay : 1 no. RCCB	
		Current : 25 Amp Pole : 2 Earth	
		leakage sensitivity : 30 mA	
		Push button : 3 nos.(ON, OFF,	
		Reset) Contactor : 3 nos. Over	
		load relay : 1no Timer : 1 no.	
		Earth leakage sensitivity : 30	
		mA	
		Frequency:47 Hz to 53 Hz	
		Function: Detection & tripping	
		for undervoltage / over voltage	
		/ neutral fail / reverse phase	
90.	PID Training kit	Temperature Sensor : 10mV/C	1 no.
		Light Sensor : Photo Conductive	
		Cell (LDR) Light Source : 2 LED's	
		V/F : Input 0-5V Output 0-5 KHz	
		Approximately) F/V : Input 0-5	
		KHz Output 0-5V	
		(Approximately) V/I : 4 to	
		20mA Clock Generator : 0-	
		43.50 KHz Analog Inputs : 4	
		Inputs with 10 bit resolution	
		DAQ Analog Output : 1 Output	
		10 bit resolutions DAQ Digital	
		C C	
		Inputs : 11 TTL Inputs DAQ	
		Digital Outputs : 11 TTL	
		Outputs DAQ Unity gain	
		amplifier: 2 (0V to 10V) DAQ	
		Frequency Counter : 0 to 6 MHz	
		(Square Wave) DAQ PC	
		Interface : USB 2.0	
91.	Intelligent Environment	Microcontroller: ATMega2560	1 no.

	Parameters measurement	Sensors and actuator 1 no.	
		each Color LCD : 1.77 inch	
		Battery : 3.7V/4400mAh USB :	
		2.0 Wi-Fi module : 1 no.	
		(2.4GHz)	
		Zigbee transceiver: 2 nos.	
		(2.4GHz/63mW) Flash memory:	
		256 KB of which 8 KB used by	
		boot loader SRAM: 8 KB	
		Temperature sensor: 0 - 100C	
		Humidity sensor: 0 – 100 %RH	
		CO2 sensor: 0-2000ppm	
		Atmospheric pressure sensor:	
		15-115kPa Solar radiation	
		sensor: 0 to 2000W/m2 O2 sensor: 0-25% Dust sensor:	
		PM2.5 and PM10 UV Index	
		sensor: 200nm-370nm Power	
		Supply: 5V DC adaptor	
92.	Types of pressure gauge	Bourdon Tube Pressure Gauge,	1 no.
52.	Types of pressure gauge	Diaphragm Pressure Gauge,	1110.
		Capsule Pressure Gauge,	
		Differential Pressure Gauge	
		Line Size: ¼"	
		Pressure: 0-150Psi	
C. Shop Flo	oor Furniture and Materials - For 2 (1	L+1) units no additional items are r	equired.
93.	Instructor's table		1 no.
94.	Instructor's chair		2 nos.
95.	Metal Rack	100cm x 150cm x 45cm	4 nos.
96.	Lockers with 16 drawers standard		2 nos.
	size		2 1103.
97.	Steel Almirah	2.5 m x 1.20 m x 0.5 m	2 nos.
98.	Black board/white board		1 no.
99.	Fire Extinguisher	Arrange all proper NOCs and e Municipal/ Competent au	

1. Internet facility is desired to be provided in the classroom.

The DGT sincerely acknowledges contributions of the Industries, State Directorates, Trade Experts, Domain Experts, trainers of ITIs, NSTIs, faculties from universities and all others who contributed in revising the curriculum.

Special acknowledgement is extended by DGT to the following expert members who had contributed immensely in this curriculum.

List of Expert members participated for finalizing the course curriculum of Semiconductor Technician trade held at CSTARI, Kolkata on 29.11.2023				
S No.	Name & Designation Sh/Mr./Ms.	Organization	Mentor Council Designation	
1.	S.K. Gupta, DDG (ER)	CSTARI, Kolkata	Chairman	
2.	N. R. Aravindan, Director	CSTARI, Kolkata	Member	
3.	G. C. Saha, Joint Director	CSTARI, Kolkata	Member	
4.	P. Mukhopadhyay, Professor	MAKAUT	Member	
5.	Uday Bhole, Dy. CEO	NVIS Technologis	Member	
6.	S. Janardhanam, TO	NSTI, Chennai	Member	
7.	N. P. Bannibagi, Deputy Director	NIMI Chennai	Member	
8.	Rupa Chakraborty, Supervisior	P. Roy ITI, Amtala	Member	
9.	Ruma Majumder (Mukhopadhyay), Foreman	Govt. ITI Kalyani, Now Deputed AT Govt. Women ITI Kolkata	Member	
10.	Sarbani Majumder (Kar), Foreman	Govt. ITI, Tollygunge, Now Deputedat Women ITI, Banipur	Member	
11.	Ananta Nandi, Supervisor	Govt. ITI Durgapur, Muchipara, West Bardhaman, West Bengal	Member	
12.	Nitesh Kumar, Scientist 'B'	STQC ERTL (E), Salt Lake, Sec-V, Kolkata	Member	
13.	Amit Kumar Mandal, Aristant Professor, BIT(TIG)	Bengal Imtitute of Technology (Unit of TIG)	Member	
14.	Patra Kusum Misra, Asst. Prof., TCEA (TIG)	Techno College of Engineering, Agartala (Unit of TIG)	Member	
15.	Asok Bandyopadhyay, Associate Director & Se-F, Head ICT & Services Group, C- DAC, Kolkata	C-DAC, Kolkata	Member	

16.	Goutam Roy, P/L	Primeinfoserv, Kolkata	Member
17.	Ayan Saha	Primeinfoserv, Kolkata	Member
18.	Abhishek Anand, Asst. Director, RDSDE, WB	RDSDE, WB	Member
19.	Tapas Kumar Chini, Retied Senior Professor, Saha Institute of Nucular Physics	RKM Shilpavidyaatan, Belur	Member
20.	Sayan Mondal, Asst. Prof.	Bengal Institute of Technology Jantech, Kolkata	Member
21.	K. Bhagya Lakshni, TO	NSTI, Howrah	Member
22.	Manish Mishra, Asst. Director	NSTI, Howrah	Member
23.	Swami Gunindrananda, Principal	Ramakrishna Mission Shilpavidyalaya Private Industrial Training Institute Belurmath PU19000086	Member
24.	B. Umapathi, Group Head, VLSI Process Technology Development Group	Semi-Conductor Laboratory, MeitY, Mohali	Member
25.	Dr. S S KERUR, ASSOCIATE PROFESSOR	SDM COLLEGE OF ENGINEERING AND TECHNOLOGY, DHARWAD- 580 002	Member
26.	Ishtiaq Kha, Program Director	TATA Technologies, Pune	Member
27.	Akshay Jadhav, Sr. Engineer	TATA Technologies, Pune	Member
28.	Rohit Yadav, Technical Lead	TATA Technologies, Pune	Member
29.	Neddhe Mahajan, Head of Human Resources	CDIL, New Delhi	Member
30.	Nitin Jain, Freelance Consultants	Electronics	Member
31.	Smitanjali Rout, Asst. Prof.	Centurion University	Member
32.	KVS Narayan, TO	CSTARI, Kolkata	Member
33.	B. Sharanappa, AD	CSTARI, Kolkata	Member
34.	B. K. Nigam, TO	CSTARI, Kolkata	Member
35.	Akhilesh Pandey, Asst. Director	CSTARI, Kolkata	Member
36.	Sk. Altaf Hossain, Asst. Director	CSTARI, Kolkata	Member
37.	PK Bairagi, TO	CSTARI, Kolkata	Member
38.	Budhaditya Biswas, TO	CSTARI, Kolkata	Member

ABBREVIATIONS:

CTS	Craftsmen Training Scheme
ATS	Apprenticeship Training Scheme
CITS	Craft Instructor Training Scheme
DGT	Directorate General of Training
MSDE	Ministry of Skill Development and Entrepreneurship
NTC	National Trade Certificate
NAC	National Apprenticeship Certificate
NCIC	National Craft Instructor Certificate
LD	Locomotor Disability
СР	Cerebral Palsy
MD	Multiple Disabilities
LV	Low Vision
НН	Hard of Hearing
ID	Intellectual Disabilities
LC	Leprosy Cured
SLD	Specific Learning Disabilities
DW	Dwarfism
MI	Mental Illness
AA	Acid Attack
PwD	Person with disabilities

