

GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING

COMPETENCY BASED CURRICULUM

CERTIFICATE COURSE ON

FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY

SECTOR: ELECTRONICS & HARDWARE

FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY

Duration: 240 Hours

NSQF LEVEL- 3.5

(Version: 1.0)

Designed in 2024

Developed By

Ministry of Skill Development and Entrepreneurship

Directorate General of Training

&

CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE

EN-81, Sector-V, Salt Lake City, Kolkata – 700 091

CONTENTS

S No.	Topics	Page No.
1.	Course Information	1
2.	Job Role	2
3.	General Information	3
4.	Learning Outcome	4
5.	Trade Syllabus	5
6.	Assessment Criteria	13
7.	Tools and Equipment (Annexure-I)	16
8.	Expert Members List (Annexure-II)	17

1. COURSE INFORMATION

1.1 GENERAL

This course has been developed for CTS/CITS trainees to take up as optional courses during course of study for technical and behavioural upgradation of trainees to meet industry related job roles. During the 240 hours duration of FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY course, a candidate is trained on professional skills & knowledge related to job role. The Broad components covered during the course are given below:

During the course, students will understand semiconductor technology and its application. It covers a wide range of topics, including the exploration of passive and active electronic components, semiconductor materials, cleanroom processes, assembly and packaging techniques, device physics, and semiconductor device applications.

1.2 COURSE STRUCTURE

Table below depicts the distribution of training hours across various course elements during a period of 6 weeks: -

S No.	Course Element	Notional Training Hours
1.	Professional Skill (Trade Practical)	180
2.	Professional Knowledge (Trade Theory)	60
	Total	240

1.3 ASSESSMENT & CERTIFICATION

The trainee will be tested for his skill, knowledge and attitude during the period of course through assessment at the end of the course through skill testing at Training Center & CBT through examination conducted by DGT.

The minimum pass percentage for skill test is 60% and for theory will be 33% as in main CTS examination.

2. JOB ROLE

FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY; is responsible for assisting in assembly, testing, and maintenance of semiconductor components and devices. Their role involves assisting in operating specialized equipment, conducting quality control checks, troubleshooting issues, and following safety protocols in cleanroom environments.

Electronics Technicians, Other; include all other Electronics Technicians engaged in research and testing in various fields of electronic engineering, not elsewhere classified

Reference NCO-2015: -

(a) 3114.9900 - Electronics and Telecommunications Engineering Technicians, Other

Mapped NOS:

- i) ELE/N9511
- ii) ELE/N9512
- iii) ELE/N9513
- iv) ELE/N9514
- v) ELE/N9515

3. GENERAL INFORMATION

Name of the Trade	FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY
Reference NCO - 2015	3114.9900
NOS Covered	ELE/N9511, ELE/N9512, ELE/N9513, ELE/N9514, ELE/N9515
NSQF Level	3.5
Duration of Craftsmen Training	240 Hours
Entry Qualification	10 th Class passed and pursuing/ passed out Electronic Mechanic, Instrument Mechanic under CTS and Electronic Mechanic, Instrument Mechanic under CITS.
Unit Strength (No. of Student), Space & Power Norms	As per affiliated mapped trade of Semiconductor Technician CTS
Instructors Qualification	B.Voc/Degree in Electronics/ Electronics and Telecommunication/ Electronics and communication/Electronics and Instrumentation Engineering from AICTE/UGC recognized Engineering College/ university with one-year experience in the relevant field. OR Diploma (Minimum 2 years) in Electronics/ Electronics and telecommunication/ Electronics and communication/Electronics and Instrumentation from AICTE/recognized board of technical education or relevant Advanced Diploma (Vocational) from DGT with two years' experience in the relevant field. OR NTC/NAC passed in the Trade of "Electronics Mechanic" or "Semiconductor Technician" With three years' experience in the relevant field. Essential Qualification: Relevant Regular / RPL variants of National Craft Instructor Certificate (NCIC) under DGT.
List of Tools and Equipment	As per Annexure – I

4. LEARNING OUTCOME

Learning outcomes are a reflection of total competencies of a trainee and assessment will be carried out as per the assessment criteria.

LEARNING OUTCOMES

- Describe the fundamental properties, characteristics and applications of semiconductor materials, including crystal structures, energy bands and carrier behaviour. (NOS: ELE/N9511)
- 2. Familiarize with passive and active electronic components built with semiconductor technology and Exposure to various semiconductor component, devices, sensors, small circuits. (NOS: ELE/N9512)
- 3. Identify semiconductor Materials and Process management. (Simulation) (NOS: ELE/N9513)
- 4. Demonstrate assembly and packaging of semiconductor technology and Attain exposure to do assembly and packaging tools and operations. (NOS: ELE/N9514)
- 5. Demonstrate Semiconductor Device Applications. (NOS: ELE/N9515)

5. SYLLABUS

SYLLABUS – FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY				
	Duration: 240 Hours			
Duration Weeks	Reference Learning outcome	Professional Skills (Trade Practical)	Professional Knowledge (Trade Theory)	
Professional skills 10 Hrs. Professional Knowledge 05 Hrs.	Describe the fundamental properties, characteristics and applications of semiconductor materials, including crystal structures, energy bands and carrier behaviour.	 Testing and characterization of diodes in different configurations (rectifiers, voltage regulators, etc.). Measuring diode characteristics, including forward and reverse biasing. Practical testing of semiconductor material properties such as Band Gap of Diode and of wafer by using Four Probe method. Measure the Hall voltage and learn Hall Effect, resistivity, mobility, and thermal conductivity. Measure the junction temperature of two different materials and Potential difference by using Seeback & Peltier effect apparatus Planck's constant measurement for understanding the photoconductivity Identification of different passive, active components and ICs. Measure the resistor, capacitor and inductor, transistor, diode values. Assembling basic 	 Introduction to semiconductors, distinguishing them from conductors and insulators. Introduction to crystal structures and their role in semiconductor materials. Energy band theory and the concept of valence and conduction bands. Doping: Understanding the concept of doping and how it changes the properties of semiconductors. Studying the process of creating n- type and p-type semiconductors. Intrinsic and Extrinsic Semiconductors Understanding the difference between pure (intrinsic) and doped (extrinsic) semiconductors. Concepts of electron and hole carriers in semiconductors. Calculating carrier concentration and mobility. Understanding the Fermi level and its importance in 	

semiconductor devices and	carrier behaviour.
circuits.	 How doping affects the
10. Verifying device	Fermi level.
functionality and	 Conductivity in
performance.	semiconductors and its
	temperature dependence.
	 Carrier Generation and
	Recombination:
	 Processes of carrier
	generation and
	recombination.
	 How they impact the
	electrical behaviour of
	semiconductors.
	 Detailed study of common
	semiconductor materials
	like silicon and gallium
	arsenide.
	 Thermal, mechanical, and
	electrical properties of
	these materials.
	How semiconductor
	materials are used in
	various devices, including
	diodes, transistors, and
	photovoltaic cells.
	 Understanding defects
	and impurities in
	semiconductor materials.
	Their impact on material
	properties and device
	performance.
	 Understanding the Energy
	band gap and
	measurement in
	semiconductor Diodes&
	Wafer – Germanium
	 Understanding the
	 Onderstanding the principle of Hall Effect in
	Semiconductor material
	 Study the Seeback &

Duefassians	For it of the second second	11 Construction and that DO	Peltier Effect Study the Photoconductivity in semiconductor materials and Planck's constant
Professional skills 35 Hrs. Professional Knowledge 10 Hrs.	Familiarize with passive and active electronic components built with semiconductor technology and Exposure to various semiconductor component, devices, sensors, small circuits.	 11. Construction and test RC time constant circuits. 12. Construct and test series and parallel resonance circuits (Use of R, L and C); RC differentiator. 13. Plot the I-V characteristics of a PN junction diode under forward and reverse bias conditions. 14. Use diodes and transistors to build and test simple circuits. This could include rectifier circuits, amplifier circuits, or oscillator circuits. 15. Familiarity with curve tracer for electrical measurements of resistors, diodes, transistors, etc. 16. Measure and compare the Silicon, Germanium diode I- V (both forward and reverse) characteristics. 17. Measure and compare the I-V (both forward and reverse) characteristics. 18. Learn the use of LED and photodiodes. 19. Construct and test Zener based voltage regulator 	 Conductors, Insulators and Semiconductors Current, Voltage and Power Resistors, Resistors in series and parallel Ohms Law and Kirchhoff's Laws Resistor colour coding, Specification of various types of resistors and their applications Capacitors and capacitance Series and Parallel connection of capacitors Inductors and inductance, Types of inductors and their construction Semiconductor material (Silicon, Germanium, Compound Semiconductors) PN Junction diode and their construction, Diode I-V characteristics Understanding how changes in temperature can affect the electrical properties of semiconductors. Brief introduction to basic semiconductor devices
		circuit. 20. Measure NPN and PNP I-V	like diodes, transistors, and their principle of

			Τ
		characteristics. 21. Measure N-type and P-type	operation.Light Emitting Diode,
		MOS transistor	• Light Emitting Diode, Photodiode, Zener Diode;
		characteristics.	Solar cells
		22. Construct and test a	Bipolar Junction
		common emitter amplifier.	Transistors, NPN and PNP
		23. Construct and test a FET	BJTs and their
		amplifier.	characteristics
		24. Measure the performance	Metal Oxide
		and characteristics of	Semiconductor (MOS)
		various semiconductor	Capacitor and MOS
		devices.	Transistor
			MOS Capacitor and MOS
			Transistor Characteristics
			 Integrated Circuits (ICs)
			 Identification of different
			ICs (Operational
			amplifiers, timers etc.)
			Various types of sensors:
			temperature, flow and
			vacuum.
			 Test and measurement of
			Resistor, capacitor,
			inductor, Diode, Transistor,
			Sensor
			Understand the internal
			fabrication design of
			Transistor
			Understand the internal
			fabrication design of IC
Professional	Identify	25. Identify and select various	Semiconductor Materials:
skills 45 Hrs.	semiconductor	semiconductor materials,	Detailed study of commonly
Professional	Materials and Process	such as silicon, germanium,	used semiconductor
Knowledge	management.	and gallium arsenide.	materials, such as silicon,
15 Hrs.	(Simulation)	Modelling cum simulation	germanium, and gallium
		software for leaning	arsenide. Understanding their
		fabrication process of semiconductor devices -	properties, advantages, and disadvantages
		26. Using simulation software	disadvantages. Oxidation: Learning about the
		to model the behaviour of	oxidation: Learning about the
		semiconductor devices.	
		semiconductor devices.	in semiconductor fabrication,

and how it affects the
properties of the
semiconductor.
Photolithography:
Exploring the theory
behind exposing
photoresist patterns
onto wafers using
masks and light
sources.
Resolution and
alignment: Factors
influencing the
resolution of
photolithography and
methods for
alignment.
Deposition Processes:
Learning about various
deposition processes used in
semiconductor fabrication,
such as chemical vapor
deposition (CVD), physical
vapor deposition (PVD), and
atomic layer deposition (ALD).
Etching: Understanding the
purpose of etching in
semiconductor fabrication and
studying different etching
techniques, such as wet
etching and dry etching.
Ion Implantation: Studying the
process of ion implantation,
which is used to dope the
semiconductor wafer.
Understanding how it works
and how it affects the
properties of the
semiconductor.
Annealing: Learning about the
annealing process, which is

Professional skills 45 Hrs. Professional Knowledge 15 Hrs.	Demonstrate assembly and packaging of semiconductor technology and Attain exposure to do assembly and packaging tools and operations.	 27. Practical exposure to variety of semi-conductor packages made of plastic/ceramic; package types: DIP, PGA, BGA, CQFP, TQFP, SOIC, SOC, Lead frame, Flip chip etc. 28. Microscopic Inspection and measurement of various package types. 29. Observe various packaging techniques used to protect the semiconductor device and provide external electrical connections. 30. Use software tools to 	used to repair damage to the semiconductor caused by processes like ion implantation. Metallization: Understanding the process of metallization, which involves depositing a thin layer of metal on the semiconductor wafer to form electrical connections. Packaging: Studying the final steps in semiconductor fabrication, which involve packaging the semiconductor device to protect it and provide electrical connections. Assembly and packaging process's introduction Package types Package design principles Lead frames Wire bonding (Different materials, Wire loop concept, Gold, silver and copper wire) Lead Finish and Trim – Solder Ball Attach Die attach Transfer Moulding Testing Wafer Dicing Glue and Chemicals in Various packaging PSOC
skills 45 Hrs. Professional Knowledge 15 Hrs.	Semiconductor Device Applications.	 design and simulate digital and analog circuits using semiconductor devices. 31. Design and implement logic gates, flip-flops and 	semiconductor devices like transistors are used in digital logic circuits, including gates, flip-flops, and memory cells.

	memory cells using CMOS	Use of semiconductor
	technology.	devices in analog circuits,
	32. Build analog component	such as amplifiers,
	such as operational	oscillators, and filters.
	amplifies, voltage regulators	Application of power
	and analog filters.	semiconductor devices in
	33. Design and analyze power	converters, inverters, and
	semiconductor devices like	motor drives.
	MOSFETs, IGBTs and	Semiconductor devices
	thyristors.	are used in signal
	34. Construct and test BJT and	processing circuits for
	MOS transistor-based	
	switching circuits.	filtering, amplification,
	35. Understanding the Power	modulation, and
	-	demodulation.
	Electronics applications &	Application of opto-
	circuitry of Semiconductor	electronic devices in
	devices like – IGBT- MOSFET,	communication systems,
	etc	display technologies, and
	36. Fabricate simple circuits on	solar energy conversion.
	a breadboard or printed	 Use of semiconductor
	circuit board (PCB), and test	devices in sensors for
	their performance.	temperature, pressure,
	37. Measure the output of a	light, magnetic fields, etc.,
	solar cell under different	and in transducers for
	light conditions, or testing	converting one form of
	the performance of an LED	energy into another.
	or laser diode.	 Application of
	38. Observe the activities with	semiconductor devices in
	semiconductor sensors,	integrated circuits for
	such as measuring	various functions,
	temperature with a	including
	semiconductor temperature	microprocessors, memory
	sensor, or light intensity	chips, and application-
	with a photodiode.	specific integrated circuits
	39. Measure the gain of an RF	(ASICs).
	amplifier, or the frequency	Semiconductor devices
	response of an RF filter.	viz. microcontroller and
	40. Integrate semiconductor	sensors application in
	sensors into Internet of	automobiles enabling
	Things (IOT) devices for data	various systems that
	collection and control.	enhance safety.,
		cillance salety.,

	41. Apply in smart homes,	performance and overall
	wearable devices and	functionality. For engine
	Industrial IOT.	control, Anti-lock Braking
	42. Examine semiconductor	Systems (ABS), Electronic
	application in vehicle	stability Control (ESC),
	control systems, safety	Airbag systems,
	features and infotainment.	infotainment systems,
	43. Implement semiconductor	Advance Driver Assistance
	devices in medical imaging,	systems (ADAS), Power
	monitor equipment and	steering, climate control,
	diagnostic tools	Keyless entry and start,
	44. Identify the application of	LED lighting, Electric and
	semiconductor technology	Hybrid vehicles etc.
	in medical electronics viz. X-	• In RF circuits for wireless
	ray machines, MRI scanners	communication, radar
	and wearable health	systems, and microwave
	devices.	applications.
	45. Experiment the basic	 Emerging applications of
	concepts of PV technology	semiconductor devices in
	like photon to electricity	areas like flexible
	conversion, Series and	electronics, quantum
	parallel conncetions of solar	computing, and
	PV Modules, VI	bioelectronics.
	characteristics of Solar	Importance of reliability
	module.	and lifetime in various
	46. Demonstrate FPGA	applications of
	applications.	semiconductor devices,
		and studying the factors
		that can affect these
		parameters.
		 Understanding the Solar
		PV Technology as an
		application of
		Semiconductor material
		for green Energy
		generation
		 Introduction to FPGA
	Examination	

6. ASSESSMENT CRITERIA

	LEARNING OUTCOME	ASSESSMENTCRITERIA
1.	Describe the fundamental	Demonstrate the fundamental properties of semiconductor
	properties, characteristics	materials.
	and applications of	Explain energy band theory including the concepts of valence and
	semiconductor materials,	conduction bands, the band gap and role of energy bands in
	including crystal structures,	semiconductor behaviour.
	energy bands and carrier	Describe the crystal structure of common semiconductor
	behaviour. (NOS:	materials.
	ELE/N9511)	Explain carrier behaviour in semiconductors including the
		concepts of electrons and holes, carrier mobility and carrier
		concentration.
		Identify the practical application of semiconductor materials in
		various fields.
2.	Familiarize with passive and	Identification of different passive, active components and ICs.
	active electronic	Measure the resistor, capacitor and inductor values.
	components built with	Construction and test RC time constant circuits.
	semiconductor technology	Construct and test series and parallel resonance circuits (Use of R,
	and Exposure to various	L and C); RC differentiator.
	semiconductor component,	Plot the I-V characteristics of a PN junction diode under forward
	devices, sensors, small	and reverse bias conditions.
	circuits. (NOS: ELE/N9512)	Use diodes and transistors to build and test simple circuits. This
		could include rectifier circuits, amplifier circuits, or oscillator
		circuits.
		Familiarity with curve tracer for electrical measurements of
		resistors, diodes, transistors, etc.
		Measure and compare the Silicon, Germanium diode I-V (both
		forward and reverse) characteristics.
		Measure and compare the I-V (both forward and reverse)
		characteristics of diodes with different break down voltages.
		Learn the use of LED and photodiodes.
		Construct and test Zener based voltage regulator circuit.
		Measure NPN and PNP I-V characteristics.
		Measure N-type and P-type MOS transistor characteristics.
		Construct and test a common emitter amplifier.
		Construct and test BJT and MOS transistor-based switching
		circuits.
		Construct and test a FET amplifier.
		Measure the performance and characteristics of various

		semiconductor devices.
3.	Identify semiconductor	Identify and select various semiconductor materials, such as
•	Materials and Processes	silicon, germanium, and gallium arsenide.
	management. (Simulation)	Prepare semiconductor materials for device fabrication including
	(NOS: ELE/N9513)	processes like cleaning, etching, or surface passivation.
		Demonstrate the doping of semiconductors to create n-type and
		p-type materials.
		Carryout oxidation processes used in semiconductor fabrication,
		such as thermal oxidation.
		Carryout the photolithography, a key process in semiconductor
		fabrication.
-		Demonstrate the deposition processes like chemical vapor
		deposition (CVD) or physical vapor deposition (PVD).
		Heat the wafer to activate dopants and repair crystal damage
		caused by ion implantation.
		Create MOS transistors involves defining gate source and drain
		regions.
		Build metal layers to connect various components on the chip.
		Insulate layers separate metal layers to prevent electrical
		interference.
		Mount the ICs in protective packages with pins for external
		connections.
		Check individual dies on a wafer for defects and electrical
		functionality.
		Ensure that packaged ICs meet their specifications before
		shipment.
		Reduce the environmental impact of semiconductor fabrication
		through cleaner processes and recycling.
4.	Demonstrate assembly and	Semi-conductor packages made of plastic/ceramic; package types:
	packaging of	DIP, PGA, BGA, CQFP, etc
	semiconductor technology	Wafer dicing, die attach, die wire bonding, sealing;
	and Attain exposure to do	Microscopic Inspection of assembly & packaging.
	assembly and packaging	Observe various packaging techniques used to protect the
	tools and operations. (NOS:	semiconductor device and provide external electrical connections.
	ELE/N9514)	
5.	Demonstrate	Use software tools to design and simulate digital and analog
	Semiconductor Device	circuits using semiconductor devices.
	Applications. (NOS:	Design and implement logic gates, flip-flops and memory cells

ELE/N9515)	using CMOS technology.
	Build analog component such as operational amplifies, voltage
	regulators and analog filters.
	Design and analyze power semiconductor devices like MOSFETs,
	IGBTs and thyristors, UJT, FET, Etc.
	Fabricate simple circuits on a breadboard or printed circuit board
	(PCB), and test their performance.
	Measure the output of a solar cell under different light conditions,
	or testing the performance of an LED or laser diode.
	Observe the activities with semiconductor sensors, such as
	measuring temperature with a semiconductor temperature
	sensor, or light intensity with a photodiode.
	Measure the gain of an RF amplifier, or the frequency response of
	an RF filter.
	Integrate semiconductor sensors into Internet of Things (IOT)
	devices for data collection and control.
	Apply in smart homes, wearable devices and Industrial IOT.
	Examine semiconductor application in vehicle control systems,
	safety features and infotainment.
	Use in engine control units (ECUs), anti lock braking systems (ABS)
	and advanced driver assistance systems (ADAS).
	Implement semiconductor devices in medical imaging, monitor
	equipment and diagnostic tools.
	Identify the application of semiconductor technology in medical
	electronics viz. X-ray machines, MRI scanners and wearable health
	devices.

ANNEXURE-I

LIST OF TOOLS & EQUIPMENT						
FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY						
S No.	Name of the Tools and Equipment	Specification	Quantity			
Same as Semiconductor Technician trade under CTS						
Additional Tools and Equipment Required						
1.	N/A					

The DGT sincerely acknowledges contributions of the Industries, State Directorates, Trade Experts, Domain Experts and all others who contributed in designing/ revising the curriculum. Special acknowledgement is extended by DGT to the following expert members who had contributed immensely in this curriculum.

List of Expert Members participated in the trade committee meeting for finalizing the course curriculum of FUNDAMENTALS OF SEMICONDUCTOR TECHNOLOGY under STC on 30.04.2024 at CSTARI, Kolkata

SI. No.	Name and Designation (Shri/Smt./Kumari)	Organization with Address	Remarks
1.	Sunil Kumar Gupta, DDG (ER)	CSTARI, Kolkata	Chairman
2.	G. C. Saha, Joint Director/HoD	CSTARI, Kolkata	Member
3.	Brindaban Das, Deputy Director/HOO	CSTARI, Kolkata	Member
4.	Prodip Mukhopadhyay, former MD WEBEL & Sr. Advisor	MAKAUT, Kolkata	Member
5.	Tapas Kumar Chini, Ex. Senior Professor	SINP, Kolkata & RKM, Belurmath	Member
6.	Aditya Mandal, Head RF Section	VECC, Bidhannagar	Member
7.	Reema Nandi, Associate Manager	Accenture, Unitech Kolkata	Member
8.	S. Chakrabrty	GVR, Kolkata	Member
9.	Biswasjit Jana, Instructor	Don Bosco Technical Institute, Prakcircus	Member
10.	Nishchal, Scientist 'C'	STQC, ERTL(E), Sector-v	Member
11.	Sayan Mondal, Asst. Prof	BIT, Bantala, Kolkata	Member
12.	Patra Kusum Misra, Asst. Prof.	T.C.E Agartala	Member
13.	Niladri Roy, Consultant	TCS	Member
14.	Bijayeelaxmi Panda, Engineer	СТТС	Member
15.	Shekhar Pradhan, Co-Founder & Director of Business Operations	Grok Learning Pvt. Ltd.	Member
16.	Makarand Joshi, Product Manager	Grok Learning Pvt. Ltd.	Member
17.	Himanshu Samal, Global Head Sales & Strategic partnerships	Grok Learning Pvt. Ltd.	Member
18.	Satyabrata Pandab, Engineer	Central Tool Room and Training Centre, Bhubaneswar	Member
19.	Mananjaya Nayak Engineer (Training Department)	Central Tool Room and Training Centre, Bhubaneswar	Member

20.	Akshay Jadhav, Sr Design Engineer	Tata Technologies	Member
21	Sunil Chore, Managing Director	Simusoft Technologies,	Member
21.		Pune	
22.	Manohar Sadashiv Desai, Technical	Skill Bahn LLP, Thane,	Member
22.	Head	Maharashtra	
23.	B. Sharanappa, Assistant Director	CSTARI, Kolkata	Member
24.	Sk. Altaf Hossain, Assistant Director	CSTARI, Kolkata	Member
25.	M.J. Vijaya Raju, Assistant Director	CSTARI, Kolkata	Member
26.	Akhilesh Pandey, Assistant Director	CSTARI, Kolkata	Member
27.	P. K. Bairagi, Training Officer	CSTARI, Kolkata	Member
28.	B. Biswas, Training Officer	CSTARI, Kolkata	Member
29.	Swapan Sen, Training Officer	CSTARI, Kolkata	Member
30.	Pradip Biswas, Jr. D/Man	CSTARI, Kolkata	Member
31.	Hemant Kujur, Jr. D/Man	CSTARI, Kolkata	Member
32.	Jinendran PK, JC	CSTARI, Kolkata	Member